Меню
№ 2 (23) - 2024 / 2024-06-30 / Көрілім саны: 134
Авторлар
Кілтті сөздер
DOI сілтемесі:
Қалай дәйексөз келтіруге болады
Зерттеу жол белгілерін тану жүйелерін жақсарту үшін, әсіресе қиын ауа-райында, конволюциялық нейрондық желілерді (CNN) пайдалануды зерттейді. CNN-ге негізделген жаңа модельді пайдалана отырып, зерттеу 43 санатты қамтитын 50 000-нан астам таңбаланған кескіндерді қамтитын неміс жол белгілерін тану стандартының (GTSRB) кеңейтілген деректер жинағын пайдаланады. Модель жаңбыр, тұман және қар сияқты ауа райы элементтерінен туындаған көріну мәселелерін азайтуға арналған адаптивті мүмкіндіктерді шығару қабаттарын ұсынады. Деректерді көбейтудің жетілдірілген әдістері ауа-райының әртүрлі сценарийлерін модельдеу үшін қолданылады, бұл оқу деректер жиынтығының әртүрлілігін байытады. Бұл зерттеу қолайсыз жағдайларда жол белгілерін анықтау үшін CNN-ге ұсынған теориялық және практикалық жақсартуларды зерттеп қана қоймайды, сонымен қатар модельдің өнімділігін дәлдік, еске түсіру және F1-ұпайы сияқты көрсеткіштер арқылы тексереді. Нәтижелер модельдің жалған позитивтерді азайтудағы және жол белгілерін дәл анықтаудағы тиімділігін растайды. Мақалада деректер жиынтығын мұқият дайындаудың, модельдерді оңтайландырудың және анықтау жүйесінің өнімділігін арттыру үшін оқытуды жетілдірудің маңыздылығы атап өтілген. Бұл интеллектуалды көлік жүйелеріне, автономды жүргізуге және жол қауіпсіздігіне оң ықпал етеді, бұл жол белгілерін танудың сенімді технологиясының болашақтағы ілгерілеуін көрсетеді.