IRSTI 81.93.29 https://doi.org/10.58805/kazutb.v.4.25-559

THE STUDY OF MACHINE AND DEEP LEARNING MODELS FOR MALWARE CLASSIFICATION
1.2A.Zhumabekova , 1*0.Ussatova, \M.Kalimoldayev, 1*V.Karyukin, !Y Begimbayeva
'Institute of Information and Computational Technologies, Almaty, Kazakhstan,
2 Al-Farabi Kazakh National University, Almaty, Kazakhstan,
3G.Daukeev Almaty University of Energy and Communications, Almaty, Kazakhstan
Correspondent-author: zhumabekova2702@gmail.com

The rapid growth of cyber threats and attacks has highlighted the need for robust information security,
confidentiality, and integrity measures. Malware, a significant category of cyber threats, is designed to
disrupt operations, damage information environments, and gain unauthorized access to systems, networks,
and data. Various types of malware, including viruses, worms, trojans, spyware, and rootkits, pose pervasive
and evolving dangers, often spread through the Internet or removable devices. While effective against
known threats, traditional signature-based detection methods struggle to identify new malware. Modern
machine learning-based approaches offer a more flexible solution by learning from large datasets without
relying on predefined signatures. This research presents a machine learning-based malware detection system
using a dataset of diverse network threats. The study explores both classical machine learning algorithms
and advanced deep learning models, including dense neural networks (DNN), Long Short-Term Memory
(LSTM) networks, and Gated Recurrent Units (GRU), to enhance malware detection accuracy. Moreover,
a newly developed hybrid LSTM-GRU deep learning model was utilized for classifying the malware
dataset. This model combines the strong specifications of both LSTM and GRU neural networks. The
used machine learning and deep learning models demonstrated good classification results. The Decision
Tree, Random Forest, and XGBoost machine learning models were superior to neural networks by around
0.02. The experiments showed that machine learning algorithms are still strong in the classification tasks
of the cybersecurity field. Among neural networks, the simple DNN model was a little worse than LSTM
and GRU by around 0.01. The recurrent LSTM and GRU models showed mostly identical scores. The
proposed LSTM-GRU model outperformed other deep learning models by 0.01 and was comparable with
the Random Forest model that reached the metrics score of 0.99.

Keywords: malware, information security, threat detection, machine learning, deep learning, Chi-square,
class balancing

SUAH/DBI BAY JAPJTAMAJIAPIbI KIIACCUPUKAIIMAJIAY YIIIIH MAIIINHAJIBIK ZKOHE
TEPEH OKY MOJEJIBJAEPIH 3EPTTEY

L2A KymabexoBa , *0.Vcarosa, 'M.Kammmoanaes, *B.Kapiokun, *E.Bernméaesa

1AKnapaTTbIK JKOHE ecerTeyilll TEXHOJIOTUsIIap WHCTUTYTHI, Anmartsl, KazakcraH,
29)1—CI>apa6I/1 ateiHAarel Kazak ¥YurTeiK YHUBepcuTeTi, Anmartsl, KazakcraH,
3F. JloykeeB aThIHAAFBl AJTMATHl SHEPTeTHKA JKoHe OailylaHbIC yHIBepcuTeTi, Anmartsl, KazakcraH,

e-mail: zhumabekova2702@gmail.com

Kubepkayintep MeH madybUIap/IbH KbUIIAM 6CYi CeHIM/II aKITAPATTHIK, KAYIICI3iK, KYTHASUTBUIBIK, KOHE
TYTACTHIK IMapaapbIHbIH KAKETTUIITIH KopceTTi. 3UusAH/IBI OaraapiaManap, KnoepKayinTepiH MaHbI3 bl ca-
HAThI aKMAPaTTHIK OpTaNapasl Oy3yFra, 3aKbpIMIayFa JKoHe Kyiesepre, Keijepre koHe JepeKTepre pykcar-
ChI3 Kipyre apHasiraH. Bupycrap, Kyprrap, TpossHAAp, IIMUOHABIK, OaFaapiamMaiap MeH pyTKUTTepi Koca
AJFaHJa, 3USHAB OarJapiaaMaiap/IsiH opTypiii Typiepi IHTepHeT HeMece asibiHOAbI KY PBUFbLIAP aPKbLTBI
Ui TapaJlaThlH KeH TapajiFaH KoHe JaMBbIIT Kesle)KaTKaH Kayin Oousin Tabbimaapl. KonranOara Heriznen-
TeH aHBIKTAYJIBIH JIOCTYPIIi dficTepi Oenrim KayinTepre Kapchl THIMIII OOJFaHBIMEH, OJIap KaHA 3USTHIIBI
OarJapiamMaHbl aHBIKTayJa KUbIHABIKTAPFa Tall 00JIa/Ibl. 3aMaHayW MAIMHAIBIK, OKBITY MOJEJIbIEPi aJl/IbIH
aJ1a aHBIKTAJIFaH KONTaHOAIapra CyieHOeCcTeH YIIKeH AepeKTep KUbIHBIHAH YUPEHY apKbUIbI UKEM/I1 HIeTiM

69

https://doi.org/10.58805/kazutb.v.4.25-559
mailto:zhumabekova2702@gmail.com

KasTbY XABAPIIBICBI - VESTNIK KazUTB - BECTHUK KazVTb

ycbIHaIbl. Byl 3epTTey opTypJii OHJIalH KayinTep/iH AepeKTep KUHAFbIH TaiijalaHa OTBIPHII, MAIIMHAJIBIK,
OKBITYFa HETi3/IeJIreH 3UsIH/IbI OaraapiamMasap/ibsl aHbIKTay JKYHeciH ychiHaabl. JKyMbIC 3UssHAb Oaraapia-
MaHbI aHBIKTAY JIQJIITH)KaKCapTy YIIIiH KJIACCUKAIBIK, MAIIMHAJIBIK OKBITY QJITOPUTM/IEPIH €, TePEHIETIN
OKBITY/IbIH KEHEUTUITeH YJTUIEPiH JIe, COHbIH 11II1H/I€ TOJIbIK, KOChUIFaH HeMpOoHIBIK xeniiepail (DNN), y3ak
KbICKa Mep3imai xkan xkeninepid (LSTM) xone kaknauisl KaiTananateiH Osoktapasl (GRU) kapacteipaisl.
CoHbIMEH Katap, 3UsH/IbI OaFapiaMa AepeKTep)KUHAFbIH JKIKTey YIITiH XKaKbIH/AA)KacaaFaH TMOPUITI TEpeH
okpITy yarici LSTM-GRU naiiganansuiael. By moaens LSTM xkone GRU HeHpoHIBIK JKeJIIepiHiH KYIITi
cHUraTTamaiapbiH OipikTipeni. KonmaHbran MalImHAJIBIK, OKBITY JKOHE TEPEH OKBITY YIITLIepi Kiaccuduka-
LIMSTHBIH JKaKChl HOTHXeiepiH kepceeTTi. Decision Tree, Random Forest s;xone XGBoost MalmMHaIBIK OKBITY
VJIriepi HeMpoHABIK skxeniepieH mamaMmeH 0,02-re achilm TYCTi. DKCIEPUMEHTTEP MAIIMHAJIBIK, OKBITY
AITOPUTM/IEPI KUOEPKAYIICI3IIK CalaChIHOAFBI KIKTEY TarcChipMaiapbiHIa 9Jli e KYIITi eKeHiH KepceT-
Ti. Hefiponnplk xeninep apaceiaa Kapamnaiibiv DNN mozeni LSTM xone GRU-gan mamamen 0,01-re
Hamap 6onzel. Kaitrananatein LSTM sxone GRU vyuriniepi ic ky3iHae Oipzaeit Oaraayiapabl KOPCETTi.
¥copirad LSTM-GRU mopeni TeperieTin okpITyabiH 0acka yiriiepined 0,01-re aceim Tycti xoHe 0,99
MeTpPUKAJIbIK yraifa Kol xkeTkisreH Random Forest yiriciMeH canbicThipyFa 001aThiH. DKCIEpUMEHTTEp
MAIIMHAJIBIK, OKBITY AITOPUTMEPi KUOSPKAYITICI3/IiK calachiHIAFbI)KIKTEY TAChIpMaIapbiH/IA 9JTi Ie KYIITI
ekeHiH kepcerTi. HelipoHapIk xesninep apacbinaa KapanaieiM DNN mozeni LSTM xone GRU-pan nmama-
meH 0,01-re Hamap 6onapl. Kaiitananateis LSTM xone GRU yorinepi ic xy3inae Oipaeit OGaranaynappl
kepcetTi. ¥chburan LSTM-GRU yirici 6acka TepeHaeTin okpITy yaritepiaeH 0,01-re achim TyCTi KoHe
0,99 meTpukablk, ynaira Ko xkeTkisreH Random Forest yiriciMeH caibiCTbipyFa 00J1aThIH.

Tyiiin ce3aep: 3usHab Oarnapaamanap, aknaparThlK Kayilci3aik, KayinTi aHbIKTay, MAITMHABIK, OKbI-
Ty, TepeH okbITY, Chi-square, KJ1acCTbl TEHAECTIPY

WCCJIEJJOBAHUE MOJEJIEM MAIIIMHHOI'O ¥ IJTYBOKOI'O OBYUYEHUSA I
KJIIACCUPUKAIIMA BPEJOHOCHOI'O ITIPOI'PAMMHOI'O OBECIIEYEHU A

L2A KymabexoBa , 20.Vcarosa, 'M.Kamumoanaes, *B.Kapiokun, *E.Beruméaesa

II/IHCTI/ITyT MH(OPMALIMOHHBIX U BHIYMCIUTEIbHBIX TEXHOIOTUi, AnmMatsl, KazaxcraH,
ZKa3aXCKUil HAIMOHAJILHBIN yHHBepcuTeT uMeHn anb-Papadu, Anmvarsl, KazaxcraH,

3 AJIMATUHCKMIA YHUBEPCUTET SHEPreTUKHU 1 cBsasu uMenn I Jlaykeepa, Anmatsl, KazaxcraH,
e-mail: zhumabekova2702@gmail.com

BBICTpPBIIA POCT KMOEPYTrpoO3 U aTaK BhISIBAIT HEOOXOIUMOCTh B HAJICKHBIX Mepax MH(OPMAIIMOHHON Oe3-
OIMACHOCTU, KOH(UACHIINATBHOCTH U 11e10cTHOCTH. BpemponocHoe 10, sBmssich 3HAUUTEIBHOM KaTeropuei
KUOepyrpos, MpeAHa3HaueHo AJisl HapylleHUs: padoThl, MOBPEXICHNUsS MH(MOPMAIIMOHHBIX CPe U TOJy-
YeHUs] HECAaHKIIMOHMPOBAHHOTO JIOCTYIA K CUCTEMaM, CETSM U JaHHBIM. PaszniyHbie BUIB BpeIOHOCHO-
ro I10, Takue Kak BUPYCHI, YEPBH, TPOSIHBI, IIIMMOHCKUE MPOTPaMMbl M PYTKHUTHI, TIPEICTABIISIOT COOOM
BCE MPOHUKAIOIINE U PA3BUBAIOIIMECS YTPO3bl, YACTO PACHPOCTPAHSIEMble Yepe3 UHTEPHET UM ChbEMHBIE
yctpoiictBa. TpaauiiMoHHBIE METOIBI OOHAPYXKEHHSI, OCHOBAaHHbIE HAa CUTHATypaX, 3(p(eKTUBHBI MPOTUB
M3BECTHBIX yIPO3, HO CTAJIKUBAIOTCS C TPYAHOCTAMU B MeHTU(]HKaluu HoBoro BpeagoHocHoro I10. Cope-
MEHHBIE METO/Ibl MAIIIMHHOTO 00y4YeHHMs TipeyiaraloT 6osiee rTiOKoe peleHre, 00yJasch Ha OOJbIIMX Ha0O-
pax JaHHBIX O0e3 HeOOXOIMMOCTH MCIIOJIb30BAHUSI 3apaHee ONpeIe/IeHHbIX CUTHATYp. [laHHOe nccieioBaHue
MpeJCTaBIIsIeT cucTeMy oOHapyxkeHus: BpeaoHocHoro 10 Ha ocHOBe MalIMHHOTo 00y4YeHuUsl ¢ UCIOJIb30Ba-
HUEeM Ha0opa JaHHBIX O Pa3IMYHBIX CETEBBIX Yrpo3ax. B padoTe M3yueHbl Kak KJIACCUUECKUE aIrOPUTMbI
MAIIIMHHOTO O0Yy4YeHHMs], TaK U MPOJBUHYTHIE MOJIENU TIIyOOKOro 0OyueHHMsl, BKJIIOUYas OJTHOCBSI3HbIE HEM-
ponnbie cetu (DNN), cetu ¢ ATMHHOMN KpaTKOcpouHOoU maMsThio (LSTM) u pekyppeHTHbIe OJIOKHU C yIpaB-
nsembiMu Bopotamu (GRU), ¢ 11esbi0 TIOBBIIIIEHNsT TOYHOCTH oOHapyxkeHus: Bpemonocnoro I10. Bosee
TOTO, s Kiaccudukanmu nartaceta Bpenonocnoro I1O ucnonb3oBasiack HeTaBHO pa3padoTaHHAsS THOPHI-
Hasi Mojenb ryookoro ooydenuss LSTM-GRU. Dta mozenb covetaer B ceOe CHIIbHbIE XapaKTEPUCTUKU

70

mailto:zhumabekova2702@gmail.com

HeiipoHHbIX ceteil LSTM u GRU. Hcnosnb3yemble MOfieIM MAIIMHHOTO 00y4YeHus U TIIyOOKOro 00yueHus
MPOJIEMOHCTPUPOBAJIM XOPOIIHE pe3yIbTaThl Kiaccudukarmu. Mojaenu MammHHoro ooydenusi Decision
Tree, Random Forest 1 XGBoost npeBocxoauiu HelipoHHble ceTd npumepHo Ha 0,02. DKcnepruMeHTbI
MOKa3aJIM, YTO AJTOPUTMbI MALIMHHOIO OOYyUY€HHMsI MO-NPEekKHEMY CUJIbHBI B 3ajayax KjaccU(pUKalUU B
obsactu kudepoesonacHocTy. Cpean HelpoHHbIX ceteit mpocTast Mogenb DNN Obuta HemMHoro xyxe LSTM
u GRU npumepno Ha 0,01. Pexyppenrnsie mogenu LSTM u GRU mnoka3anu B OCHOBHOM UJEHTUYHbIE
oreHku. [Ipennoxennass moseb LSTM-GRU nper3omna apyrue mogaenu riryookoro odyuenus va 0,01 u
ObLIa conoctaBuMa ¢ Mojesibio Random Forest, kotopas gocturia omenku MetTpuk 0,99. DKcriepriMeHThI
MOKa3aJIM, YTO AJITOPUTMbI MAIIMHHOTO OOyYeHHs MO-TPeKHEMY CHJIBHBI B 3aJadax KJIAacCH(HKALMN B
obnactu kudepoesonacHocTu. Cpean HelpoHHbIX ceTeil mpocTast Mogenbs DNN Obuta HemHoro xyxe LSTM
u GRU npumepno Ha 0,01. Pexyppentsie mogenu LSTM u GRU nokazanyu B OCHOBHOM HUIEHTHUYHBIE
orenku. [Ipennoxennas mosenb LSTM-GRU nper3ormia apyrue Mmogaenu riryookoro odyuenns va 0,01 u

ObLIa coroctaBuMa ¢ Mojiesibio Random Forest, koTopas nocturia 3Hauennid MmeTpuk B 0,99.

Kirouessble cioBa: BpefoHocHoe [10, nHpopmamonHast 6e301acHOCTb, 0OHAPYKEHHE yrpo3, MallIiH-
Hoe o0yueHue, riryookoe oOyuenue, Chi-square, OaaHCHPOBKA KJIacCCOB.

Introduction. Nowadays, the significant growth
of different types of cyber threats and attacks makes
people seriously consider possessing information
security [1], confidentiality [2], and integrity
[3]. The specific characteristics of cyber threats
belong to malware. Malware is software designed
to damage the information environment, disrupt
operations, and gain unauthorized system access,
network, and data. Malware [4] represents pervasive
and dangerous threats that evolve continuously
to exploit vulnerabilities in individual systems
and large-scale networks. There is a great
variety of malware, including viruses (a type of
malware that attaches itself to legitimate files or
programs), worms (self-replicating malware that
can spread across networks without needing to
attach themselves to a host file or program), trojans
(this malware pretends to be legitimate software
and deceives users into downloading and executing
them), spyware (it monitors and collects information
about users, such as logins, passwords, credit card
numbers, and other sensitive data), rootkits (this
malware is designed to give attackers the privilege
to access the system while hiding its presence), and
different types of threats.

Malware [5] is usually distributed via the Internet
and removable devices like flash drives. They affect
systems by significantly reducing the computer’s
performance, significantly reducing the free space
of its HDD and SSD drives, and displaying various

advertisements on the screen. This is one of the
most obvious signs that the user’s computer system
is infected with malware. Dangerous malware steals
files containing confidential data, hides them inside
the computer, and continues to perform malicious
actions. In order to protect against malware,
various approaches are utilized. The signature-based
approach is a traditional method used by antivirus
and anti-malware programs. It identifies unique
patterns, or signatures, associated with the known
malware. During the process of file scanning, the
software compares its code to the signature stored
in the database. Although this approach can detect
many different types of malware, it also encounters
problems with recognizing new and previously
unseen malware. A modern machine learning-based
method proposes a completely new way of detecting
malware. It learns from large datasets and does
not rely on predefined signatures, which makes it
more flexible and capable of identifying previously
unseen malware.

The detection of malware with the use of machine
and deep learning approaches was explored in
many scientific works. The paper [6] focused on
classifying malware with DNN and Bi-LSTM.
The performance of these two models was strong.
DNN reached an accuracy score of 98%, while
Bi-LSTM got 99%. In the cybersecurity field, the
work [7] demonstrated a new machine-learning
framework for detecting different types of malware,

71

KasTbY XABAPIIBICBI - VESTNIK KazUTB - BECTHUK KazVTb

including Ransomware, Spyware, and Trojan
Horses. The main algorithm of this framework was
the Ensemble-based classifier that proved effective
in handling threats and reached an accuracy score
of 98%. The research paper [8] analyzes spyware
detection using a decision tree machine learning
algorithm. It gave an opportunity to get an accuracy
score of 99%. This classifier gave an accuracy
score of 97%, precision — 88.9%, recall — 88.6%,
and Fl-score — 88.6%. A very effective Gated
Recurrent Unit (GRU) model was implemented
in [9], which proved to be especially effective
in detecting malicious attacks on the Internet of
Things. Its use allowed to achieve a precision score
of 99.5%. The work [10] 1s devoted to analyzing
flexible and scalable methods for malware detection
in Android mobile devices. The proposed machine
learning approach on the DataMD dataset gave the
classification accuracy of 98% and 99%.

In this paper, the malware dataset consists of
various types of network threats. The machine
learning approach is chosen to detect malware.
Moreover, it is not restricted to only classical
machine learning algorithms but also explores the
classification results obtained by such deep learning
models as dense neural network (DNN), Long
short-term memory (LSTM) neural network, Gated
recurrent unit (GRU) neural network, and proposed
LSTM-GRU model.

Materials and methods. Software development
for malware classification includes many significant
steps crucial to this task. A suitable dataset with
malicious and legitimate elements is gathered.
The dataset is characterized by its appropriate
specifications for analysis and classification. This
repository includes the most relevant malware.
When the dataset is gathered, it is necessary
to do the subsequent steps where data cleaning,
data normalizing, feature selection, class balancing,
and classification using the machine and deep
learning models are implemented. Data cleaning is
significant because noisy or irrelevant data could
interfere with the analysis or model performance.
Data normalization refers to adjusting the values in
the dataset to a common scale without distorting
differences in the ranges of values. This is crucial

for machine learning algorithms sensitive to input
features’ scale. Feature selection leaves only the
most relevant features for classification because
too many irrelevant or redundant features can
lead to overfitting and longer training times. Class
balancing allows all classes to be equal, which is
important because underrepresented classes can lead
to biased models.

Materials and methods. The Malware dataset
comprises the most relevant malware, comprising
216352 elements and 58 features. It is available by
the following link (https://github.com).The analysis
of this dataset showed that three columns (‘ID’,
‘md5’, ‘Unnamed: 57°) are not valuable and do
not carry any meaningful things. Therefore, they
were removed. The other features describe more
significant characteristics of the dataset. Their
detailed specifications are described in the following
way:

- Machine: Information about the architecture
type, such as x86, x64, etc.

- SizeOfOptionalHeader: The size of the optional
header in the PE (Portable Executable)

format that provides important information about
the file, including entry point, stack size, etc.

- Characteristics: The bit field that indicates
attributes of the file, such as if it is an executable

oraDLL.

- MajorLinkerVersion: The major version
number of the linker, indicating the primary

version of the tool used for linking code.

- MinorLinkerVersion: The minor version
number of the linker.
- SizeOfCode: The code section’s size that

indicates the amount of space allocated for
executable code.

- SizeOfInitializedData: The size of the initialized
data section that includes data already

initialized in the file.

- SizeOfUninitializedData: The size of the
uninitialized data section that represents

the memory that will be allocated at runtime.

- AddressOfEntryPoint: The entry point address,

72

https://github.com/saurabh48782/Malware_Classification/blob/master/MalwareData.csv

marking where execution begins when the
file is loaded.

- BaseOfCode: The base address of the code
section, showing where the executable code

starts in memory.

- BaseOfData: The base address of the data
section, marking where initialized and uninitialized
data sections start.

- ImageBase: The preferred base address of the
file when loaded in memory.

- SectionAlignment: Aligning sections in
memory, ensuring that sections are placed at

consistent memory boundaries.

- FileAlignment: Aligning sections in the file,
ensuring consistency in the physical file

layout.

- MajorOperatingSystemVersion: The major
version of the operating system required to run

the file.

- MinorOperatingSystemVersion: The minor
version of the operating system required to run

the file.

- MajorImageVersion: The major version of the
image or file version.

- MinorImageVersion: The minor version of the
image or file version.

- MajorSubsystemVersion: The major version of
the subsystem needed to run the executable,

such as the Windows GUI or console.

- MinorSubsystemVersion: The minor version of
the subsystem needed to run the

executable, such as the Windows GUI or console.

- SizeOfImage: The total size of the image in
memory, including headers, code, and data

sections.

- SizeOfHeaders: The size of all headers
combined, providing metadata about the PE file
layout.

- CheckSum: The checksum value used to verify
file integrity.

- Subsystem: The specifications of the required

subsystem, such as Windows GUI, console,
or device drivers.

- DllCharacteristics: The characteristics of a DLL
file, including settings for security and memory
handling.

- SizeOfStackReserve: The amount of memory
reserved for the stack, which handles

function calls and local variables.

- SizeOfStackCommit: The amount of memory
committed to the stack, ready for immediate

use.

- SizeOfHeapReserve: The amount of memory
reserved for the heap, where dynamic

allocations are made.

- SizeOfHeapCommit: The amount of memory
committed to the heap, allocated and ready

for use.

- LoaderFlags: The flags for the PE loader that
are usually set to zero but can indicate

specific loading requirements.

- NumberOfRvaAndSizes: The number of data
directory entries in the PE header.

- SectionsNb: The number of sections in the file
representing a logical part of the file, such

as code or data.

- SectionsMeanEntropy: The mean entropy of all
sections used to detect obfuscation or

encryption in malware.

- SectionsMinEntropy: The minimum entropy
among the sections that can help to identify

highly ordered or structured data.

- SectionsMaxEntropy: The maximum entropy
among the sections useful for identifying

highly randomized data.

- SectionsMeanRawsize: The average raw size of
sections in the file.

- SectionsMinRawsize: The minimum raw size of
any section in the file.

- SectionMaxRawsize: The maximum raw size of
any section in the file.

73

KasTbY XABAPIIBICBI - VESTNIK KazUTB - BECTHUK KazVTb

- SectionsMeanVirtualsize: The average virtual
size of sections when loaded in memory.

- SectionsMinVirtualsize: The minimum virtual
size of sections when loaded.

- SectionMaxVirtualsize: The maximum virtual
size of sections when loaded.

- ImportsNbDLL: The number of DLLs imported
by the executable.

- ImportsNb: The total number of imports across
all DLLs.

- ImportsNbOrdinal: The number of ordinal
imports, which use numbers instead of names

to locate functions.

- ExportNb: The number of exports in the file,
representing functions the file makes available

to other modules.

- ResourcesNb: The number of resources embedded

in the file, such as icons or strings.

- ResourcesMeanEntropy: The average entropy of
resources, useful for detecting

compressed or encrypted resources.

- ResourcesMinEntropy: The minimum entropy
among resources.

- ResourcesMaxEntropy: The maximum entropy
among resources.

- ResourcesMeanSize: The average size of
resources in the file.

- ResourcesMinSize: The minimum size of
resources in the file.

- ResourcesMaxSize: The maximum size of

resources in the file.

- LoadConfigurationSize: The size of the load
configuration table, which can specify security

and debugging settings.

- VersionInformationSize: The size of the version
information, providing metadata like

version numbers and copyright.

Data normalization. The dataset is cleaned and
normalized. In the data-cleaning phase, the elements
with many missing values are removed. The
duplicate records are also identified and eliminated.

When the dataset elements are cleared, a more
important normalization step occurs. Normalization
[11] usually presents the scaling numerical data
of a specific range, commonly from 0 to 1.
Normalization guarantees that features with larger
ranges do not dominate those with smaller ranges,
making the model more stable and preventing bias
in the learning process. One of the most convenient
ways to normalize the values of the dataset is
to utilize the Min-Max scaling technique. It is a
widespread approach that efficiently normalizes the
values of features. It is computed by the following
formula (1):

Y-Y .
’ _ min 1
scaled Ymax B sz’n7 ()

where Y is an initial value; Y, ,,, is a minimum
value; Y,

. . me .
mae 18 @ maximum value; Y, ;. 1s a scaled
value.

Feature selection. The feature selection process
is realized with the use of the Chi-square metric.
This metric is a statistical measure used to estimate
the relationship between features and the target
value, providing the degree of their independence.
Before calculating the statistical value of every
feature, all of them are converted to the numerical
form. The contingency table is created for all the
features with the following formula (2):

72 = Z Vz _U?i)Q

?

2)

where V; is observed frequency, and Uj; is the
expected frequency. U; is computed as (3):

row_total x column_total

U. =

(2

3)

grand_total

The features are ordered in a descending way by
the calculated Chi-square values.

Class balancing. The vectorized data is checked
for balancing. If the dataset is imbalanced,
the special balancing technique called Random
oversampling is applied to the dataset to make
classes equal. This method randomly selects
elements from the minority class and duplicates
them to balance the dataset. The duplicated elements

74

are added to the training set until the number of
elements in the minority class equals the number in

the majority class. The class balancing with the use
of Random oversampling is shown in Figure 1.

)
)
il —

Malware Benign

Benign Malware

Random oversampling

Figure 1-Class balancing with Random oversampling

Classification with machine learning and deep
learning models. When the classes are balanced,
the dataset is classified with machine and deep
learning models. There are several such models,
among which the most popular are Decision Tree,
Random Forest, XgBoost, Dense neural network
(DNN), Gated recurrent unit (GRU) neural network,
and Long short-term memory (LSTM) neural
network.

A Decision Tree [12] is a supervised machine-
learning model for the classification task. This
model is structured like a tree, with internal nodes

representing decisions based on feature values,
branches that demonstrate the outcomes of those
decisions, and leaf nodes of the final prediction
and output. The topmost node of the tree presents
the entire dataset, which is the starting point for
decision-making and is split based on the feature
that provides the best separation of the data. At the
internal nodes, the dataset is split into two or more
subgroups based on the chosen feature’s value. The
final nodes do not further split and correspond to
a class label. The structure of the Decision Tree is
shown in Figure 2.

Figure 2-Decision Tree

75

KasTBY XABAPHIBICHI - VESTNIK KazUTB - BECTHHUK Ka3zVTb

A Random Forest [13] is a machine-learning - It trains pretty quickly.
algorithm that is based on the concept of ensemble _ 1¢ effectively processes datasets with a large
learning. It builds multiple decision trees and ,ymber of features.
combines their results to improve the Accuracy of a

single decision tree. The Random Forest algorithm - It predicts data with very high Accuracy.

uses bagging to create multiple training datasets by - It ShOWS' good efficiency even with a large
randomly sampling from the original dataset with number of missing data.
replacement. Each decision tree is trained on a - It has high scalability.

different bootstrapped dataset, ensuring the treesare ~ The structure of Random Forest is shown in
diverse and uncorrelated. Generally, the Random Figure 3.
Forest algorithm has the following specifications:

Decision Tree 1 Decision Tree 2 Decision Tree N

Decision Tree 3

Majority voting

Class

Figure 3 - Random Forest

— [(),
iy " ,_'. e b
{::_ 2 r lrf"'xl
1 A HE
'_,.._ AN .'.r." . __,_/r.
| AL
| 4 B S -
Oy (w0
el Il Ak o - Al Ortpast
Lpun datz) A !'{_. i A lmysn
W "_.: _I:. f i
) A
= AN, «}[H' “'ws 4
e B Ay Ha
_/ - b '/ W
B @ e . @
= 5 4

Hidden
Ly ers

Figure 4 - Dense neural network

76

XGBoost [14] is a very strong machine-learning
algorithm widely used in the classification task. It
lies in a series of boosting algorithms that combine
the predictions of multiple learners. XGBoost is
known for its efficiency and high performance.
Employing an ensemble approach corrects the errors
made in previous iterations through the next model.
During each step, the deviations of the ensemble’s
predictions are assessed on the training data, and
the model is optimized by introducing new tree
forecasts to reduce the overall deviation. This
process continues until the desired error threshold
is met or an early stopping condition is triggered.

A Dense neural network (DNN) [15] is a
fundamental type of neural network in which each
neuron in one layer is connected to every neuron in
the subsequent layer. It is the simplest architecture
in neural networks, typically used as the basic one
in deep learning. In this architecture, the input

layer receives the input data z = z,,%9,...,2,,
and wy,w,, ..., w, present weights of each level,
Ct-1 >

[+)
A

F—QqQ ——— A

ht-1

i

xt

@

-

and by,b,,...,b, of the input layer. The hidden
layers consist of neurons that apply weights to the
input features, followed by an activation function
that produces non-linearity. There are usually many
hidden layers in a neural network. The output layer
shows the final prediction that usually corresponds
to the number of classes: binary (two — 0 or 1) and
multiclass (three or more). The scheme of DNN is
presented in Figure 4.

A Long short-term memory (LSTM) [16] is
a type of Recurrent neural network designed to
effectively capture long-term dependencies in the
sequential data and avoid problems related to the
vanishing gradient. An LSTM cell contains three
types of gates: input, forget, and output, which
regulate the stream of information through the
whole network. The forget gate decides which
information to discard from the cell state, while
the input gate selects new information to store. The
output gate defines the information that is required
to be extracted from the current cell state.

h |

T
X
m‘.]
T

Y _» It

Figure 5 - Long short-term memory neural network

The forget gate is calculated as (4):

fe = 0<Wf g, @] + bf)7 4)

where f, is a forget gate output; o is a sigmoid
activation function; W are weights for the forget
gate; h,_; state from the previous time step; x, is a
current input; b is bias for the forget gate.

The input gate is computed as (5):

iy =W, [h(_y, 2] +), (5)

where 7, is an input gate; W, are weights for the
input gate; b, is bias for the input gate.

The cell state is calculated as (6):

Ct = ta’nh’(WC ' [ht—h xt] + bc)7 (6)

where C, is a cell state; W, are weights for the

77

KasTbY XABAPIIBICBI - VESTNIK KazUTB - BECTHUK KazVTb

cell state; b, is bias for the cell state.

The output gate is computed as (7):

0y = 0<Wo : [ht—la xt] + bo)7 (7

where o, is the output gate; b, is bias for the output
gate.

The scheme of the LSTM model is shown in
Figure 5.

A GRU [17] is another type of Recurrent
neural network designed to capture dependencies
in sequential data like LSTM but with a simpler
structure. GRU combines the hidden and cell states
into one entity, making them computationally more
efficient than LSTM [18]. GRU includes update,
reset gates, candidate hidden state, and final hidden
State.

The update gate is calculated as (8):

Ry = O(Wz ’ [htfbxt] + bz)a (8)

where z, is an update gate; o is a sigmoid
activation function; W, is a weight matrix for the
update gate.

The reset gate is computed as (9):

ry=0(W,-[h1, 2] +b,), 9

where 7, is a reset gate; IV, is a weight matrix for
the reset gate; b,. is a bias for the reset gate.

The hidden state is calculated as (10):

hy, = tanh(W,, - [r, * h,_y,z,] +by), (10)
where f:t is a candidate hidden state, which
incorporates the current input and the reset hidden
state; IV, is the weight matrix for the candidate
hidden state; b;, is a bias term for the candidate
hidden state; * is the element-wise multiplication.

The final hidden state is computed as (11):

~

hy =2z xhy 1+ (1 —2) % hy, (11)

where h, is a final hidden state for the current
time step; z, 1s an update gate controlling how much
of the previous hidden state to keep and how much
of the candidate state to add.

The scheme of the GRU neural network is shown
in Figure 6.

X1 X1

Figure 6 - Gated recurrent unit neural network

The machine learning and neural network
algorithms presented above have been widely used
and distributed in many works due to their success
in data classification tasks. In this study, they
also successfully coped with the task of malware
detection. However, to improve the efficiency
of threat detection, a new hybrid neural network

model, which includes LSTM and GRU layers, was
developed. This model combines the advantages
of both architectures for more efficient data
processing. The first recurrent LSTM layer helps
model long-term dependencies in data, revealing
patterns useful for identifying threats. Since LSTM
has memory, it retains information about previous

78

steps, which is especially important in sequence
analysis. The GRU layer follows LSTM and helps
simplify the model training by reducing the number
of parameters compared to LSTM, making it more
efficient. The hybrid LSTM-GRU model uses the
advantages of both architectures. The LSTM layer
is used as the first layer to process the data, and
the GRU can be used in the next stage to speed up

|,_
i

@

1
T

T
s —=X

hi=1 — =

L

the training and processing of the output data. This
reduces the training time on large datasets. Overall,
the hybrid LSTM-GRU model offers enough
functionality to handle complex models without
overloading the computational resources of the
machines. The scheme of the hybrid LSTM-GRU
neural network model is shown in Fig. 7.

¥
‘ ¥.J_E p—o-o i
| 1
| |

-l el]

Figure 7 - LSTM-GRU neural network

Results and discussion. Malware classification
experiments [19] were tested on the corresponding
dataset. First of all, the dataset was cleaned
and preprocessed. Three unmeaning features were
eliminated, while the remaining 55 features were
normalized with the Min-Max scaling technique
[20]. The feature selection algorithm was applied
to the normalized dataset, retrieving the 20 most
significant ones. In total, 3 machine learning
(Decision Tree, Random Forest, XgBoost), 3 deep
learning (DNN, LSTM, and GRU), and 1 proposed
hybrid LSTM-GRU deep learning model were used
to classify the dataset.

The results were evaluated with the use of 4
measures: Accuracy, Precision, Recall, and F1-
score. Accuracy measures the portion of correctly
classified elements out of the whole number of
elements. The formula for calculating Accuracy is
shown in (12):

TP +TN
Total_number

Accuracy = (12)

Precision is the portion of correctly predicted
positive elements to the total elements that were
predicted as positive. Precision is computed as (13):

TP
TP+ FP
Recall is the portion of correctly predicted

positive elements to the total actual positive
elements. Recall is computed as (14):

Precision =

(13)

TP
TP+ FN
F1-score is the metric characterizing the balance

between Precision and Recall. F1-score is computed
as (15):

Recall = (14)

Precision x Recall
F1— =2 15
seore x Precision + Recall (5)

The results of classifying the Malware dataset
with machine learning and deep learning models
were evaluated with the described metrics, the
histograms, and the Area Under the ROC curve.
The AUC-ROC value is in the range of 0 to 1.0. A
value of 1.0 means an ideal classifier; a value of 0.5
describes random guessing, and a value less than 0.5
identifies a problematic case.

The results of the experiments that were
conducted are shown in Table 1 and Figure 7.

79

KasTBY XABAPHIBICHI - VESTNIK KazUTB - BECTHHUK Ka3zVTb

Table 1. The values of Malware classification

Metrics | Decision Tree | Random Forest | XGBoost | DNN | LSTM | GRU | Proposed
LSTM-
GRU
model
Accuracy | 0.988 0.992 0.989 0.959 | 0.972 | 0.971 | 0.986
Precision | 0.985 0.991 0.987 0.962 | 0.972 | 0.966 | 0.981
Recall 0.991 0.993 0.991 0.957 | 0.972 | 0.976 | 0.989
Fl-score | 0.988 0.992 0.989 0.960 | 0.972 | 0.971 | 0.985
EM I I |_| I ﬁe
i i,
0.0 &Pd ’ K-:": ,-_)‘bd;'\ & é‘m & f @b.p “%e 0.2 ?;w — h;i o8 Lo
A A &

Classdiers

Figure 7-Histograms and an AUC-ROC curve

All seven models showed good classification
results. The Decision Tree, Random Forest, and
XGBoost machine learning models gave high
accuracy scores. It proves that machine learning
algorithms are still strong in the classification tasks
of the cybersecurity field. The Random Forest
model reached scores of 0.99, being the best among
other machine learning models. This proves that
Random Forest has always had the greatest potential
in classification tasks. Among neural networks, the
simple DNN model was a little worse than LSTM
and GRU by around 0.01. The recurrent LSTM and
GRU models showed mostly identical scores. The
proposed LSTM-GRU model outperformed other
deep learning models by 0.01 and demonstrated
good tendencies in getting even higher scores in case
of having larger datasets.

Conclusion. The fast development of computer
technologies has led to the appearance of a large
number of cyber threats that advance in breaches of

security and confidentiality of information systems.
The practical side of this research presents the
creation and testing of malware detection models
that can improve the security and resilience of
information systems to modern cyber threats.
Malware is one of the most dangerous threats
because many of its forms exist, including viruses,
worms, trojans, spyware, etc. They can rapidly
spread in the information environment. Therefore,
effective measures of their detection and prevention
have become especially relevant in the last decade.
The traditional ways of protecting against such
cyber threats have become less significant in recent
years. It is necessary to utilize other advanced
methods. This research is based on machine learning
algorithms and deep learning models, which allow
the analysis of malware based on known signatures
and identify new, previously unknown threats.
The practical experiments of this research work
covered the detection of malware threats with the

80

use of seven machine learning and deep learning
models, including Decision Tree, Random Forest,
XGBoost, DNN, LSTM, GRU, and the proposed
hybrid LSTM-GRU, giving accuracy scores above
0.95. The LSTM-GRU and Random Forest models
reached scores of 0.98 and 0.99, being very
close to the ideal result. It is also planned to
extend this research, adding more experiments to

malware can improve the accuracy and reliability
of classification and increase the flexibility of
security systems, making them less vulnerable to
new, unpredictable threats.

Financing. This work was carried out under
project AP19675957, titled “The research and
development of the system for ensuring the protection
of medical data using blockchain technology and

classify various other types of threats in future
works. Therefore, the study demonstrates that using
machine learning and deep learning to analyze

artificial intelligence methods,” implemented at
the Institute of Information and Computational
Technologies.

References

1. Khando, K., Gao, S., Islam, S. M., & Salman, A. Enhancing employees information security awareness
in private and public organisations: A systematic literature review // Computers & security. -2021.- Vol.
106. DOI 10.1016/j.cose.2021.102267.

2. Nissenbaum, H. Protecting privacy in an information age: The problem of privacy in public //In The
ethics of information technologies. Routledge. -2020.- P. 141-178. DOI 10.2307/35051809.

3. Shelke, M.V., Deshmukh, J.Y., Ajalkar, D.A., & Dhumal, R.B. A Robust Ensemble Learning Approach
for Malware Detection and Classification // Journal of Advanced Research in Applied Sciences and
Engineering Technology.-2024.-Vol. 48(1).- P. 152-167. DOI 10.37934/araset.48.1.152167.

4. Zhao, Q., Chen, S., Liu, Z., Baker, T., & Zhang, Y. Blockchain-based privacy-preserving remote data
integrity checking scheme for IoT information systems // Information Processing & Management. -2020.
- Vol. 57(6). DOI 10.1016/j.ipm.2020.102355.

5. Tun Li, Ya Luo, Xin Wan, Qian Li, Qilie Liu, Rong Wang, Chaolong Jia, Yunpeng Xiao. A malware
detection model based on imbalanced heterogeneous graph embeddings // Expert Systems with
Applications.-2024.-Vol. 246. 123109. DOI 10.1016/j.eswa.2023.123109.

6. Caixia Gao, Yao Du, Fan Ma, Qiuyan Lan, Jianying Chen, Jingjing Wu. A new adversarial malware
detection method based on enhanced lightweight neural network // Computers & Security. -2024. -Vol.
147. DOI 10.1016/j.cose.2024.104078.

7. Wira Zanoramy, Mohd Faizal Abdollah, Othman Abdollah, & S.M. Warusia Mohamed S.M.M.
Ransomware Early Detection using Machine Learning Approach and Pre-Encryption Boundary
Identification // Journal of Advanced Research in Applied Sciences and Engineering Technology. -2024.
-Vol. 47(2).- P. 121 - 137. DOI 10.37934/araset.47.2.121137.

8. Hossain, M.A., Islam, M.S. Enhanced detection of obfuscated malware in memory dumps: a machine
learning approach for advanced cybersecurity // Cybersecurity. -2024. -Vol. 7(16). DOI 10.1186/s42400-
024-00205-z.

9. Mosleh M. Abualhaj, Ahmad Sami Al-Shamayleh, Alhamza Munther, Sumaya Nabil Alkhatib,
Mohammad O. Hiari, Mohammed Anbar. Enhancing spyware detection by utilizing decision trees with
hyperparameter optimization // Bulletin of Electrical Engineering and Informatics. -2022. -Vol. 13(5). -
P. 3653-3662. DOI 10.11591/eei.v13i5.7939.

10. Ahmad Heryanto, Deris Stiawan, Adi Hermansyah, Rici Firnando, Hanna Pertiwi, Mohd Yazid Bin
Idris, Rahmat Budiarto The incorporation of stacked long short-term memory into intrusion detection

81

https://doi.org/10.1016/j.cose.2021.102267
https://doi.org/10.2307/3505189
https://doi.org/10.37934/araset.48.1.152167
https://doi.org/10.1016/j.ipm.2020.102355
https://doi.org/10.1016/j.eswa.2023.123109
https://doi.org/10.1016/j.cose.2024.104078
https://doi.org/10.37934/araset.47.2.121137
https://doi.org/10.1186/s42400-024-00205-z
https://doi.org/10.1186/s42400-024-00205-z
https://doi.org/10.11591/eei.v13i5.7939

KasTbY XABAPIIBICBI - VESTNIK KazUTB - BECTHUK KazVTb

systems for botnet attack classification // IAES International Journal of Artificial Intelligence. -2024. -Vol.
13(3).- P. 3657-3670. DOI 10.11591/ijai.v13.i3.pp3657-3670.

11. Aso Mafakheri, Sadegh Sulaimany. Android malware detection through centrality analysis of
applications network//Applied Soft Computing. -2024.-Vol. 165. DOI10.1016/j.asoc.2024.112058.

12. Singh, D., & Singh, B. Investigating the impact of data normalization on classification performance //
Applied Soft Computing. -2020. -Vol. 97. DOI 10.1016/j.as0c.2019.105524.

13. Andelic, N., & Baressi Segota, S. Development of symbolic expressions ensemble for breast cancer
type classification using genetic programming symbolic classifier and decision tree classifier // Cancers.
-2023. - Vol. 15(13). DOI 10.3390/cancers15133411.

14. Manzali, Y., & Elfar, M. Random forest pruning techniques: a recent review // In Operations research
forum. -2023. -Vol. 4(43). DOI 10.1007/s43069-023-00223-6.

15. Hariharan, B., Siva, R., Sadagopan, S., Mishra, V., & Raghav, Y. Malware Detection Using XGBoost
based Machine Learning Models-Review // In 2023 2nd International Conference on Edge Computing and
Applications (ICECAA). -2023. -P. 964-970. DOI 10.1109/ICECAA58104.2023.10212327.

16. Gupta, K., Jiwani, N., Sharif, M. H. U., Datta, R., & Afreen, N. A Neural Network Approach For
Malware Classification // In 2022 International Conference on Computing, Communication, and Intelligent
Systems (ICCCIS). -2022. -P. 681-684. DOI 10.1109/ICCCIS56430.2022.10037653.

17. Catak, F. O., Ahmed, J., Sahinbas, K., & Khand, Z. H. Data augmentation based malware detection
using convolutional neural networks // Peerj computer science. - 2021. DOI 10.7717/peerj-cs.346.

18. Thakur, P., Kansal, V., & Rishiwal, V. Hybrid deep learning approach based on Istm and cnn for
malware detection // Wireless Personal Communications. -2024. -Vol. 136(3). - P.1879-1901. DOI
10.1007/s11277-024-11366-y.

19. Kolli, S., Balakesavareddy, P., & Saravanan, D. Neural Network based Obfuscated Malware detection
// In 2021 International Conference on System, Computation, Automation and Networking (ICSCAN).
-2021. DOI 10.1109/ICSCAN53069.2021.9526496.

20. Ussatova, O., Zhumabekova, A., Begimbayeva, Y., Matson, E. T., & Ussatov, N. Comprehensive DDoS
Attack Classification Using Machine Learning Algorithms // Computers, Materials & Continua. -2022.
-Vol. 73(1). - P. 577-594. DOI 10.32604/cmc.2022.026552.

21. Ussatova, O., Zhumabekova, A., Karyukin, V., Matson, E. T., Ussatov, N. The development of a model
for the threat detection system with the use of machine learning and neural network methods //International
Journal of Innovative Research and Scientific Studies. -2024.-Vol. 7(3). -P. 863- 877. DOI
10.53894/ijirss.v7i3.2957.

Information about the authors

Zhumabekova A.- master, Institute of Information and Computational Technologies, Al-Farabi Kazakh National University,
Almaty, Kazakhstan, e-mail: zhumabekova2702@gmail.com;

Ussatova O.- PhD, associate professor, Institute of Information and Computational Technologies, G.Daukeev Almaty University
of Energy and Communications, Almaty, Kazakhstan, e-mail: uoa_olga@mail.ru;

Kalimoldayev M. — doctor of Physical and Mathematical Sciences, professor, Academician of the National Academy of Sciences
of the Republic of Kazakhstan, Institute of Information and Computational Technologies, Almaty, Kazakhstan, e-mail:
mnk@ipic.kz;

Karyukin V.-PhD, Institute of Information and Computational Technologies, Al-Farabi Kazakh National University, Almaty,
Kazakhstan, e-mail: vladislav.karyukin@gmail.com;

Begimbayeva Y.-PhD, Associate professor, Institute of Information and Computational Technologies, G.Daukeev Almaty
University of Energy and Communications, Almaty, Kazakhstan, Almaty, Kazakhstan, e-mail: Enlik_89@mail.ru

82

https://doi.org/10.11591/ijai.v13.i3.pp3657-3670
https://doi.org/10.1016/j.asoc.2024.112058
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.3390/cancers15133411
https://doi.org/10.1007/s43069-023-00223-6
https://doi.org/10.1109/ICECAA58104.2023.10212327
https://doi.org/10.1109/ICCCIS56430.2022.10037653
https://doi.org/10.7717/peerj-cs.346
https://doi.org/10.1007/s11277-024-11366-y
https://doi.org/10.1109/ICSCAN53069.2021.9526496
https://doi.org/10.32604/cmc.2022.026552
https://doi.org/10.53894/ijirss.v7i3.2957
mailto:zhumabekova2702@gmail.com
mailto:uoa_olga@mail.ru
mailto:mnk@ipic.kz
mailto:vladislav.karyukin@gmail.com
mailto:Enlik_89@mail.ru

Csedenusi 06 asmopax

Kymabekora A.T.-maructp, UHCTUTYT MH(DOPMAITMOHHBIX ¥ BEIYMCIUTENBHBIX TexHosmornit, KasHY nM. anp-Papadu, Amarel,
Kazaxcran, e-mail: zhumabekova2702@gmail.com;

VYcarosa O.A. - PhD, accoumnpoBaHHbIi npoceccop (Io1eHT), MHCTUTYT MH(POPMAIIMOHHBIX W BEIYHCIUTEIBHBIX TEXHOJIOTHU,
AnmaruHckuil YausepcuteT DHepretuku u Cesasu um. I.[laykeesa, Anmatel, Kazaxcran, e-mail: uoa_olga@mail.ru;

Kamumongaes M.H.- nokTop ¢u3nko-marematnyeckux Hayk, rnpogeccop, Akagemuk HAH PK, Unctutyt nagopmaivoHHbIX
1 BBIUHMCIUTEIbHBIX TeXHOIOTHi, AnmMatel, KazaxcraH, e-mail: mnk@ipic.kz;

Kapiokun B.W.- PhD, MHcTUTYT HH(OPMALIMOHHBIX ¥ BHIYUCIUTEBHBIX TexHOJ0rni, KasHY um. anp-Papabdu, Anmars, Kazax-
cTaH, e-mail: vladislav.karyukin@gmail.com;

Berumobaena E.E. - PhD, acconmmpoBannsiii mpodeccop (noneHT), MHCTUTYT MH(POPMALIMOHHBIX U BHIYUCIUTEIBHBIX TEXHOJIO-
ruil, AnmaTuHckuid YHuBepcuteT JHepretuku v Ceasu um. I'.JlaykeeBa, Anmartel, Kazaxcran, e- mail: Enlik_89@mail.ru

83

mailto:zhumabekova2702@gmail.com
mailto:uoa_olga@mail.ru
mailto:mnk@ipic.kz
mailto:vladislav.karyukin@gmail.com
mailto:Enlik_89@mail.ru

	Н.Боранбаева, Б.Оразбаев, Л.Рзаева, Ж.Карабаев, Б.Серимбетов КАТАЛИТКАЛЫҚ КРЕКИНГ ҚОНДЫРҒЫСЫНАН ӨНІМНІҢ ШЫҒУЫН PYTHON БАҒДАРЛАМАЛЫҚ ОРТАСЫН ҚОЛДАНУ АРҚЫЛЫ АНЫҚТАУ

