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Predicting thermal comfort is crucial for optimizing built environments for human habitation, as it
impacts health, productivity, and overall well-being. To address this imperative, interdisciplinary colla-
boration among architects, engineers, psychologists, and data scientists is needed to develop reliable predic-
tive models that anticipate occupants’ thermal comfort preferences across diverse environmental conditions
and architectural designs. Traditional methods rely on human comfort models, which can be subjective
and time-consuming. Machine learning algorithms, such as Support Vector Machines (SVM) and Random
Forest (RF), have been utilized to predict thermal comfort with high accuracy and efficiency. The Internet
of Things (IoT) is revolutionizing the building management systems industry, with adaptive control
algorithms and modular architectures exploring the IoT paradigm. This paper discusses the use of SVM
and Random Forest algorithms for predicting thermal comfort in buildings, exploring their strengths and
weaknesses and comparing their performance in different scenarios. The study analyzed a dataset of
thermal comfort data, filtering by quantity and removing outliers. The data was split into 80% for training
and 20% for testing. The study used SVM and Random Forest models to capture complex relationships
between environmental parameters and thermal comfort responses. The results showed that the IQR method
provided 3-4% accuracy, while the reducing label values method offered 20-23% accuracy. The study also
tested the parameters of the models, resulting in a 2-4% difference between the two models. The study
concluded that Random Forest appears more stable than SVM and plans to add new features to improve
accuracy.

Keywords: Heating, ventilation, and air conditioning, temperature, thermal comfort, support vector
machine (SVM), random forest (RF).
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[Tporuo3upoBanue TerIo0BOro KOMMopTa UMeeT pelialee 3HaYeHUe Jis ONTUMU3ALIMYA CTPOUTETBHBIX
Cpeji ISl YeJIOBeYEeCKOro MPOXKMBAHUS, TaK KaK OHO BJIMSET Ha 3J0POBbE, MPOU3BOAUTEIHFHOCTD M 00IIee
Omarormonyyre. JIs pereHus 9Tou 3a1aun TpedyeTcss MeXTUCIUTUTMHAPHOE COTPYIHUYECTBO apXUTEKTO-
POB, MHKEHEPOB, TMCUXOJIOTOB U CHEHUAUCTOB M0 00padoTKe JAHHBIX Ui pa3paOOTKU HAJIEXKHBIX MPO-
THOCTUYECKUX MOJEJeN, MPeABUISAIIMX MPEANOYTEHUs KUIbLOB K TEILUIOBOMY KOMQOPTY B Pa3IMUHbIX
KJIMMAaTUYECKUX YCIOBUSAX U aPXUTEKTYPHBIX pelIeHUAX. TpaJuIIMOHHBIE METOABI OCHOBAHBI HA MOJIENSAX
KoM(OpTa YesIOBeKa, KOTOPble MOTYT OBITh CYObEKTUBHBIMY ¥ 3aTPATHBIMU TI0 BpeMeHU. AJITOPUTMBI Ma-
IIIMHHOTO 00y4YeHHus, Takue Kak Support Vector Machine (SVM) u Random Forest (RF), ncronp3oBanvich
IUIs1 TPOTHO3UPOBAHUS TEIUIOBOrO KOM(pOpPTa ¢ BBICOKOM TOYHOCTBIO M 3(p(eKTUBHOCTHIO. VIHTEpHET Be-
et (IoT) peBoOLMOHM3HUPYET OTPACIIb CUCTEM YIIPABJIEHUS 31aHUSIMU, C aJAlITUBHBIMU YIIPABJISIOIMMHA
QITOPUTMAMU U MOAYJIBHBIMU apXUTEKTypamu, uccienyomumu napaaurmy loT. B nanHoi cratbe 00Cyx-
AaeTcs ucnonp3oBaHue anroputMoB SVM u Random Forest 1151 nporao3upoBanus TerioBoro komgopra
B 3/IaHUSIX, UCCIIEYIOTCS MX TPEUMYILIECTBA U HEJJOCTATKH, & TAKKE CPABHUBAETCS UX MPOU3BOAUTEILHOCTh
B Pa3IMUHBIX CICHApUsX. B pamMkax mccieqoBaHus ObUT IPOAHAIM3UPOBAH HAOOP JTAHHBIX 110 TEIIOBOMY
KoMQOpTY, Mpou3BeieHa (PUIBTPALUs IO KOMUYECTBY U ynaneHue BhiOpocoB. [JaHHble ObUTH pa3/ieneHbl Ha
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80% nns obyuenus u 20% s rectupoBanus. B uccnenoannu ucronb3oBamuch Moaenu SVM u Random
Forest 1151 BeISIBIEHUST CJIOKHBIX B3aUMOCBSI3EH MEX/ly TTapaMeTpamMu OKPYKAIOLIEeH Cpeibl U peaklysiMu
Ha TerioBor Komdoprt. PesynbraTsl okaszamu, uro meton IQR obecrnieun TouHocts B 3-4%, B TO BpeMst
KaK METOJl YMEHbBILIEHUs] 3HAYEeHUI METOK MPeaoCcTaBml TOYHOCTh B 20-23%. Takske ObUIM IPOBEPEHBDI Ma-
paMeTpsl MOJIeNIeid, UTO MPUBEJIO K pa3nuuuio B 2-4% Mexay IByMs Moaensmu. MccnenoBanue 3aKI0yaer,
yto Random Forest okazascs 6onee ycroitunBbeiM, yeM SVM, U 1iaHupyeT 100aBUTh HOBbIe (DYHKLIUM AJ151
TIOBBIITIEHUST TOYHOCTH.

KuaroueBble c10oBa: oToruieHre, BEHTWISIUSA W KOHAUIIMOHAPOBAHUE BO3/1yXa, TeMIleparypa, TerIoBOM
komdoprt, Support Vector Machine (SVM), Random Forest (RF).

SVM JKOHE RANDOM FOREST MO/IEJIJIEPIH ITAMIAJIAHY APKbBLIbI KBLIYJIBIK,
KAMJIBLIBIKTBI BOJIKAY

H.B. Aceimxan , A. KapToaes
Kazakcran-Bputan Texaukanslk, YHuBepcuteTi, Anmarel, Kazakcran,
e-mail: anb.asymhan@gmail.com

JKBUTYITBIK, JKaMIBUTBIKTHL OOJIKAY aiaM TYPYHI YIIIiH CAJIbIHFAH OPTaHBl OHTANIAHABIPY YIIIiH ©T¢ MaHBI-
31bl, OUTKEHI OJ1 JeHCAyJIbIKKA, OHIMAUTIKKE jKoHEe Kbl dJI-ayKaTKa acep ereni. by moceneHi mienry
COyJIeTIIIep, UHXEHepiep, MCUXOJIOrTap KoHe JepeKTep FalbIMIapbl apachblHAAFbl 9PTYPJi KIMMATTHIK,
JKOHE COYNETTIK TU3ANHIAFbl TYPFBIHHBIH KbLTYJIBIK, KAWIBUIBIK, KaJlayJapbiH OOMKAaUThIH CEeHIMA1 OomkaMm-
IbI MOZICTB/IEPAL 931pJiey YIIIiH MOHAPAIBIK, BIHTHIMAKTACTHIKTHI Tasan eTefdi. JJocTypii ofictep cyObeKTUBTI
JKOHE YaKbITThl KAXKET €TEeTiH aJlaM KalJIbUIbIK YJrijepine cyreHeni. Support Vector Machine (SVM) sxone
Random Forest (RF) clsKTbl MallIMHAJBIK OKBITY AJITOPUTMAEP1 KOFAPBI AJIIK NEH THIMIUTIKIIEH TepMU-
SUTBIK, JKaWJTBUIBIKTBI OOJDKay YINiH NMaiaananbuiabl. 3artapasiy nHTepHeTi (I0T) mapaaurMachiH 3epTTeHTiH
a/IanTUBTI OacKapy aJlrOpUTMIEpi MEH MOAY/IbIIK ApXUTEKTYpaiapbl apKbLIbl FUMapaTTapibl OacKapy xKyu-
eNepiHiH MHIYCTPUSICHIHAA TOHKEpic kacaiiapl. By Makanana FuMapaTTapAarbl KbUTYJIBIK, KaNIbLTBIKTHI
oormskay yuria SVM xkone Random Forest anropurmaepin naiiianany TaakblIaHaabl, OJapAblH APTHIKIIBLIbI-
KTapbl MEH KeMIITUTIKTepi 3epTTeseli KoHe SPTYPJli ClieHapUiIepIeri OJIapAbIH OHIM/IUIIT CAJIBICTBIPBLIA B
3eprreynin Oip Oeiri peTiH/e TePMUSUIBIK, KAMIBUIBIK, JePEKTePiHIH KUbIHTHIFbI TAJIAH/IbI, CAHbI OOWBIHIIA
CY3UJI/1i JKoHEe LIEKTeH ThIC MoHep Koubuiabl. lepektep oKy yuriH 80% xoHe Tectiniey yuuiH 20% OeniH-
ai. 3epTTey KoplaraH opTa mapaMeTpriepi MeH KbLUTYJBIK, KANIbUIbIK, peaKIUsIapbl apachiHIAFbl KYpaesi
KaTbIHACTap/pl aHblKTay yiiniH SVM xkone Random Forest yarinepin naiigananasl. Hotuxkenep kepceTkeH-
neit, IQR omici 3-4% manpik Oepemi, a KaricelpMaHbl azaTy oaici 20-23% monaik 6epeni. Monenbaepiiy
napameTpiepi Jie TeKCepiii, HOTHKeCiHIe eKi Mojesb apachiHaa 2-4% afdbplpMaIlbUIbIK, OOJIBL. 3epTTey
Random Forest SVM-re kaparaHga CEeHIMIIPEK €KEHIH HaJIeNJe/ll KoHe TAUIIIKTI KaKcapTy YIIIH KaHa
MYMKIHIIKTEPAL KOCYIbI sKOCHapian OThIPMBbI3.

TyiiiH ce3/ep: KbUIbITY, KeIACTY KoHe ayaHbl OarTay, TeMIepaTypa, TEPMUSUIBIK, KAUIBUTBIK, Support
Vector Machine (SVM), Random Forest (RF).

Introduction. In the pursuit of optimizing built
environments for human habitation, predicting
thermal comfort emerges as a pivotal challenge.
With climate change intensifying, the frequency and
severity of extreme weather events are increasing,
amplifying the significance of understanding and
managing indoor thermal conditions. The need to
predict thermal comfort stems from its profound

impact on human health, productivity, and overall
well-being. Inadequate thermal conditions, whether
excessive heat or cold, can lead to discomfort,
fatigue, and even health complications, thereby
compromising individuals’ quality of life and
impeding productivity in various settings, including
workplaces, educational institutions, and residential
spaces.
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Furthermore, the economic implications of
disregarding thermal comfort cannot be overlooked.
Suboptimal indoor climates contribute to increased
energy consumption as occupants resort to
heating or cooling systems to mitigate discomfort,
resulting in inflated utility bills and environmental
repercussions. Hence, there is a pressing need to
develop reliable predictive models that anticipate
occupants’ thermal comfort preferences across
diverse environmental conditions and architectural
designs. These models should consider factors
such as ambient temperature, humidity levels,
clothing insulation, metabolic rates, and individual
preferences to furnish accurate assessments
of thermal comfort levels. Addressing this
imperative requires interdisciplinary collaboration
among architects, engineers, psychologists, and
data scientists to integrate knowledge from
environmental science, human physiology, and
behavioral psychology. By leveraging advancements
in sensor technology, data analytics, and machine
learning algorithms, predictive models can be
refined to offer real-time insights into thermal
comfort dynamics, empowering building managers
and occupants to optimize indoor environments
for enhanced well-being and sustainable resource
utilization. Let’s look at how this all affects in more
detail and with an example. Many people know that
temperature is a very important factor for a person,
when you start to get sick, the temperature of your
blood rises and this gives you a signal that you have
been poisoned or caught a cold. In a word, it signals
that something has gone wrong in your body. Now
how does the room temperature affect and why do
we need a comfortable temperature? For example,
consider a summer day when you start preparing for
lessons or studying something, you close the door
of your room so that the noise does not interfere
with your studies and close the window because it
is hot outside. But, here the opposite effect occurs,
since you closed the door, you reduced the area of
the room and the speed of airflow into your room.
Further, carbon dioxide will be released, which will
fill the room, thereby reducing the oxygen in the
room and increasing the temperature of the room.
Thus, you become a little distracted and lethargic.
You can correct the situation by opening the door

of the room. Also, when you are late for a lesson
or a meeting or an exam, you will release a stress
hormone that will increase your body temperature
and your heart rate, given that not only you are sitting
in the exam, but about 40 people and everyone has
an increased level of stress and this affects the fact
that oxygen is quickly absorbed and replaced by
carbon dioxide. This will heat up the temperature
of the classrooms and reduce the efficiency level
of the students inside. And therefore, usually at
the beginning of the exam, some questions are not
clear, then as the stress level decreases, then clarity
of mind opens up. Usually, the door is opened
for this because it has become hot, but there are
HVAC or NV systems for this, which sometimes
turn off or they do not work correctly. Thus, if
the comfortable temperature recognition system
works correctly, then by choosing the temperature,
you can reduce the level of stress that will be
at the beginning of the exam, thereby increasing
efficiency. If it’s cold in the classrooms, usually
people fall asleep, you can notice it when you arrive
early at 8 in the morning for the first lessons, this
is because the human body feels cold and goes into
an energy-saving mode like bears in hibernation.
That’s why thermal comfort prediction is a crucial
aspect of building design and management as it
determines the satisfaction level of occupants in a
given space. Predicting thermal comfort involves
analyzing various factors such as temperature,
humidity, air velocity, and clothing insulation.
Traditional methods of predicting thermal comfort
rely on human comfort models, which can be
subjective and time-consuming. In recent years,
machine learning algorithms, such as Support
Vector Machines (SVM) and Random Forest (RF),
have been utilized to predict thermal comfort with
high accuracy and efficiency. SVM and RF are both
supervised learning algorithms that can be trained
on a dataset of thermal comfort parameters and
their corresponding human feedback to accurately
predict thermal comfort in new environments.

Literature review.The Internet of Things
(IoT) is revolutionizing the building management
systems industry, with the number of connected
devices expected to reach 125 billion by 2030.
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However, the current BMS solutions are limited in
flexibility, particularly in feedback control options.
To fully harness the IoT paradigm, adaptive control
algorithms and modular architectures have been
explored.

The authors propose the “Semantically-
Enhanced IoT-enabled Intelligent Control System”
(SEMIOTICS)  architecture, which exploits
redundancy in control system capabilities and
automatically implements alternative configurations
based on quality-of-service criteria [1]. A study
introduces a novel model that excludes gender
and age factors in thermal comfort assessment.
The model considers six thermal factors: air
temperature, mean radiant temperature, relative
humidity, air speed, clothing insulation, and
metabolic rate. The model is designed using
Supervised Machine Learning in a commercial
building [2]. A study in Bilbao, Spain, analyzes
human thermal perception in response to external
temperatures using KUBIK, an energy efficiency
research facility, to improve indoor comfort and
reduce energy consumption [3]. This study evaluates
indoor thermal comfort using Fanger method and
ASHRAE Standard 55, focusing on real-world
conditions to maintain well-being, productivity,
and energy conservation in buildings [4]. This
study introduces a multiple preferencesbased model
for predicting group thermal comfort in shared
spaces, integrating individual preferences and
environmental parameters. It segments occupants
based on BMI, predicts individual comfort
zones, and adjusts for group satisfaction [5].
Thermal comfort optimization in buildings is
crucial for occupant well-being, productivity, and
energy efficiency. Assessment involves models
considering air temperature, humidity, radiant
temperature, and speed. ASHRAE 55 standards
define acceptable conditions. Alternative models
like Artificial Neural Networks, hybrid ANN-fuzzy
models, SVM, decision trees, fuzzy logic, and
Bayes networks offer flexibility and accuracy [6].
Thermal comfort is a crucial aspect of indoor
environmental quality, categorized into static,
adaptive, and data-driven models. Static models
like PMV, which integrate environmental and

personal factors, have limitations. Adaptive models
consider psychological and behavioral factors,
while data-driven models use sensor technology
for realtime assessments [7]. The authors develop
a building thermal model using low-resolution
data from smart thermostats, enhancing accuracy
and applicability across seasons. They adapt
traditional empirical models into a data-driven
approach, using surrogate features to approximate
heat gains. The model can be implemented on
edge devices or cloud infrastructure, offering
advantages in data collection, model learning,
and deployment [8]. Research on indoor thermal
comfort has focused on innovative cooling systems
like Thermoelectric Air Duct. Neural network
models have shown accuracy in predicting comfort
parameters, especially in dynamic environments.
The relationship between climatic variables,
occupant comfort, and system performance is
crucial [9]. Thermal comfort prediction and
energy optimization in buildings are crucial for
occupant satisfaction and energy efficiency. Factors
influencing comfort include metabolic rate, clothing
insulation, and air temperature. Deep feedforward
neural networks and reinforcement learning models
help predict comfort levels. Monitoring and
optimizing HVAC energy consumption is essential
for building operation [10]. The authors present a
novel methodology using machine learning, data
mining, and statistics to develop predictive models
for Combined Heat, Cooling, and Power (CHCP)
systems. The methodology includes four stages:
data preparation, data engineering, model building,
and model evaluation. Data preparation involves
retrieving failure events, labeling instances, and
creating a comprehensive dataset. Data engineering
enhances data representation through feature
extraction and feature selection. The model building
uses machine learning algorithms for classification
and regression tasks. Model evaluation considers
time to failure (TTF) and performance metrics
for suitable selection [11]. The study explores
thermal comfort in indoor environments using a
novel approach called Relative Thermal Sensation
(RTS). The RTS considers thermal sensation
as a continuous function of time, providing a
more nuanced understanding of human thermal
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sensation. The authors propose a 3-point RTSS to
gather real-time data on relative thermal sensation,
capturing subtle changes in thermal perception
that traditional discrete scales may not capture.
The study also integrates RTS data with Absolute
Thermal Sensation data from modified versions
of the ASHRAE 7-point thermal sensation scale
to develop a more comprehensive understanding
of thermal comfort [12]. Interpretable thermal
comfort systems are being explored to improve
energy efficiency and occupant satisfaction in
smart building environments. Traditional models
like the Predicted Mean Vote (PMV) are often
uninterpretable, making it difficult for building
operators to understand the underlying mechanisms
driving thermal comfort. Researchers have
proposed interpretable thermal comfort systems
using machine learning techniques like Partial
Dependence Plots (PDP) and SHAP values. These
techniques help operators understand the impact
of environmental conditions on human comfort
and the importance of different features under
varying conditions. Additionally, interpretable ML
algorithms can be used to develop surrogate models
of existing comfort models [13].

In this paper, we will discuss the use of SVM and
Random Forest algorithms for predicting thermal
comfort in buildings. We will explore their strengths
and weaknesses and compare their performance
in different scenarios. The aim of this study is
to provide a comprehensive understanding of the
potential of these machine learning algorithms in
predicting thermal comfort, which can help to build
designers and facility managers optimize the indoor
environment and improve the comfort of building

occupants.

Materials and Methods. The primary objective
of this study is to offer a comprehensive
understanding of the potential of machine learning
algorithms in predicting thermal comfort. This
knowledge can be instrumental in assisting designers
and facility managers in optimizing the indoor
environment, ultimately enhancing the comfort of
building occupants.

Hypotheses:

Before commencing our experiments, we have
formulated the following hypotheses:

1) Data Preprocessing:

- It is essential to remove NaN values and set

boundaries on the number of values in each column
to ensure the selection of appropriate features.

- Utilizing the IQR (Interquartile Range) method
for label value reduction to handle outliers
effectively.

2) Encoder Selection:

- The choice of encoder, whether it be
OneHotEncoder, LabelEncoder, or Word2Vec, will
be critical in transforming categorical variables into
a format suitable for machine learning algorithms.

3) Feature Selection with SelectKBest:

- Utilizing the SelectKBest model will assist us in
identifying a list of features that are most relevant to
the thermal comfort prediction.

4) Feature Filtering:

- After initial filtering, we will choose variants of
the features that closely correlate with temperature
predictions.

> Data >>Filtering >>Encoding>>Featureselection > ML >> Done >

Figure 1 — Steps

. Dataset

The data was taken from the Kaggle dataset which
was taken from the ASHRAE dataset [14]. The data
has 70 columns and 107583 rows.

B. Filtering data

In the beginning, after looking at the description
of the data, we do filtering, when viewing it, it turned
out that some columns have little data. Because of
this, filtering by quantity went on, and 60.000 lines
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were taken by the border. Below this boundary, all hypothesis to test, the idea is to use IQR (Inter
data was deleted, then it was necessary to remove the Quartile Range) method to remove outliers if it is
Nan value, some rows could remain empty because exist.

we had 107583 rows from the beginning. One more

Filtering

L th

55 than

50000 x
DATASET —|

Null data x

[ ]
BO000 and _ Word
abowe J
[ ]

Not null J -

Mumibs=r

Figure 2 - Filtering scheme

C. Encoding

Encoding

Wors :E,\/_{ rr ENCODING }:D,

:D: m—— T
- R

Mumber

Figure 3 - Encoding scheme

When converting text to a number, there wer®. Feature selection
two choices LabelEncoder or OneHotEncoder, the When choosing a feature, there were two
choice stopped at One- HotEncoder as it showed yays to select using the SelectBest library or a

good results. correlation with some kind of restriction and with
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the hypothesis. The choice settled on correlations
using a boundary above 50% of correlations.
For features, was used (Age, Clo, Sex, Met,
Thermal preference, Year, Season, Koppen climate
classification, Cooling strat- egy building level,
City, PPD, Air temperature (C), Outdoor monthly
air temperature (C), Relative humidity (%), Air
velocity (m/s)) columns. This showed features are
the final result, before that we tested a lot of feature
combinations. All combinations and variations will

be presented in the Experi- ment section. As you can
see, new features were added that helped improve
the accuracy. The dataset was split into 80% for
training and 20% for testing. Thermal comfort
columns usually contained

values from 1 to 6. The next hypothesis, convert
label values to integers. We will have unique 6
values, from 6 unique digits, we reduce thermal
comfort values to 3 digits, which significantly
improves accuracy.

. Inter Quartile Range (IQR)

Feature selection
ML Module
Correlation = 0.3 and SV
_B your guess J :>
A & B FUTURE Rand Forest
——— |:|l> ? SELECTION
Comelation < 0.5 x
Figure 4 - Feature selection
Calculation of IQR:
The Interquartile Range (IQR) is a statistical e Firstly, youneed to arrange your dataset in ascend-
measure that represents the spread or dispersion  ing order.

of a dataset. The Interquartile Range (IQR) is a
measure of statistical dispersion that is calculated as
the difference between the third quartile (Q3) and
the first quartile (Q1) of a dataset. Mathematically,
it is defined as:

IOR =03 - Q01

where Q1 is the median of the lower half of the
dataset and Q3 is the median of the upper half of the
dataset.

The Interquartile Range (IQR) is a statistical
measure used to assess the spread or dispersion of
a dataset. It is particularly useful in identifying and
dealing with outliers, which are data points that
significantly differ from the rest of the dataset.

Here’s how the IQR is calculated and how it can
be used to remove outliers:

e Then, find the median of the dataset, which is the
middle value when the data is sorted. If the dataset
has an odd number of observations, the median
is the middle value. If it has an even number of
observations, the median is the average of the two
middle values.

e Divide the dataset into two halves at the median.
The lower half contains all the values less than or
equal to the median, and the upper half contains
all the values greater than or equal to the median.

* Find the median of each half. This gives you the
first quartile (Q1) and the third quartile (Q3) of
the dataset, respectively.

* The Interquartile Range (IQR) is then calculated
as the difference between Q3 and Q1: IOR = 03 -

0l1.
Identifying outliers using IQR:
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* Qutliers can be detected using the IQR method
by considering values that lie below Q1 — 1.5 x
IOR or above Q3 + 1.5 x IQR. These values are
considered to be significantly different from the
rest of the dataset.

e Values below Q1 — 1.5 x IOR or above Q3 + 1.5 x
IQR are commonly referred to as lower and upper
bounds, respectively.

* Any data points falling outside these bounds can
be considered outliers.

Removing outliers using IQR:

* Once outliers are identified using the IQOR method,
you can choose to remove them from the dataset
to improve the robustness of your analysis or
model.

* Qutliers can be removed by filtering the dataset
to exclude any observations that fall outside the
lower and upper bounds defined by Q1 — 1.5 x
IOR and

03 + 1.5 x IQR, respectively.

» After removing outliers, the dataset may be more
representative of the underlying distribution and
less influenced by extreme values.

Considerations:

* While the IQR method is effective in identifying
and removing outliers, it’s important to exercise

SVC with linear kernel

sepal width (cm)

sepal length (cm)

SVC with RBF kernel

sepal width (cm)

I sepal length (cm)

caution and consider the context of the data.

* Qutliers may sometimes carry valuable informa-
tion or be indicative of rare but important events.
Therefore, the decision to remove outliers should
be made judiciously based on the specific goals of
the analysis or model.

* Additionally, the choice of the multiplier (1.5
in the conventional method) used to define the
bounds can be adjusted depending on the desired
level of sensitivity to outliers.

In summary, the Interquartile Range (IQR) is a
useful statistical measure for assessing the spread of
a dataset and identifying outliers. By calculating the
IOR and defining bounds based on it, outliers can be
effectively detected and removed, leading to a more
robust analysis or model.

F. Support Vector Machine (SVM)

Support Vector Machine is a powerful supervised
machine learning algorithm used for classification
and regression tasks. SVM works by finding the
optimal hyperplane that separates different classes
or, in the case of regression, predicts continuous
outcomes. The key concept behind SVM is to
maximize the margin between different classes or, in
regression, to minimize the error between predicted
and actual values while controlling for overfitting.

LinearSVC (linear kernel)

sepal width (cm)

sepal length (cm)

SVC with polynomial (degree 3) kernel

sepal width (cm)

=]

sepal length (cm)

Figure 5 - Support Vector Machine
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In the context of thermal comfort prediction,
SVM can be wutilized to analyze complex
relationships between various environmental
factors such as temperature, humidity, and air
velocity, and the corresponding human thermal
comfort responses. By training the SVM model
on labeled datasets containing information about
environmental conditions and associated thermal
comfort ratings, the algorithm can learn to predict

the level of thermal comfort for a given set of
environmental parameters.

G. Random Forest (RF)

Random Forest is a popular machine-learning
algorithm that can be used for both classification and
regression tasks. It is an ensemble learning method
that combines multiple decision trees to create a
more accurate and stable model.

Random KForest

s

Decision Tree-1

Result-1

Decision Tree-2

Result-2

Decision Tree-N

l

Result-N

Majority Voting / Averaging

Final Result

Figure 6 - Random Forest

Data preparation involves cleaning the data,
dealing with missing values, and transforming it
to ensure it is suitable for the algorithm. Random
sampling is used to randomly select a subset of
the data to use for training each decision tree.
Decision tree creation is created using recursive
partitioning and feature selection. Voting is used to
combine the predictions of all the trees to make
the final prediction. Evaluation is done using a
validation set. Overall, the Random Forest algorithm
is a powerful machine-learning method that can be
used for a wide range of tasks. It is easy to use
and can produce accurate and stable predictions
even with noisy or incomplete data. When applied
to thermal comfort prediction, Random Forest
models excel in capturing nonlinear relationships
and inter- actions among various environmental
factors. By aggregating predictions from multiple

decision trees, Random Forest can provide accurate
estimates of thermal comfort levels across different
environmental conditions.

H. Integration with loT

The IoT component of the system involves
deploying a network of sensors within the building.
These sensors collect real-time data on various
environmental conditions, such as temperature,
humidity, CO2 levels, and occupancy. Data from
IoT sensors are transmitted to a central server
for storage and analysis. Wireless communication
protocols like Wi-Fi, Bluetooth, or LoRaWAN
can be used for efficient data transfer. The Al
models receive real-time data from the IoT sensors,
enabling them to continuously update predictions
and make immediate adjustments to the HVAC
system for optimal ther- mal comfort. An important
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aspect of the system is its ability to create a
feedback loop that maintains thermal comfort. The
Al algorithms analyze the real-time data from IoT
sensors and make recommendations or control the
HVAC system to ensure that thermal comfort is
maintained. For instance, if the system detects
a deviation from the desired comfort level, it
can adjust the temperature, humidity, or airflow
accordingly.

I. Alternative prediction value

So, an alternative way for predicting value we
use the Thermal preference column instead Thermal
comfort. If we do not switch from 6 digits to 3 as
before.

Results and Discussion. After filtering, we
have 21 columns out of 70. And we make feature
selections using correlation. Moreover, we avoid
choosing Fanger’s features. After one more filtering
by cor- relation and with model SelectKbest which
will help us to get the list of features. We get more
than 3 variations, but we stopped in those variants:

1) Firstset of 17 features: (Age, Sex, Met, Thermal
pref- erence, Thermal sensation, Clo, Subjects
height (cm), Subjects weight (kg), Year, Season,
Koppen climate clas- sification, Building type,
Cooling strategy building level, Air temperature
(C), Outdoor monthly air temperature (C),
Relative humidity (%), Air velocity (m/s)).

2) Second set of 9 features: (Age, Sex, Met, Clo,
Year, Season, Air temperature (C), Relative
humidity (%), Air velocity (m/s)).

3) Third set of 15 features: (Age, Clo, Sex,

Met, Thermal preference, Year, Season, Koppen
climate classification, Cooling strategy building
level, City, PPD, Air tempera- ture (C), Outdoor
monthly air temperature (C), Relative humidity
(%), Air velocity (m/s))

In the end, we have 17 columns and 6765 rows.
Starting work, we first take 17 out of 17 columns,
we get not good results. Second iteration we take
9 out of 17 columns they also give results around
the first iteration. In the last iteration, we take
15 out of 17 columns results are not good either.
For that situation, we tested our hypothesis and
IQR method gives approximately 3-4% accuracy,
and the reducing label values method gives 20-23%
accuracy. By changing the parameters of the models
we define good parameters for our case then
for the SVM model, the parameters were taken
as kernel = "rbf”, gamma = 0.001, and ¢ = 3.
And for the Random Forest, the parameters were
taken as estimators = 300, max depth = 15. These
parameters gave the maximum accuracy values.
The results of comparing the use of LabelEncoder
and OneHotEncoder in the dataset give a 2-4%
percent difference between them. Regardless of the
features, and what parameters have been entered.
This influenced the fact to take OneHotEncoder.
If you do data standardization, the accuracy results
will not change much and remain practically the
same. For standardization, we used StandardScaler
and MinMaxScaler models.

Below are presented 1, 2, and 3 tables the
beginning results of our prediction:

Table 1 - Iteration of 17 features

Model | Accuracy | Precision | Recall | F1 score

SVM | 0.509 0.451 0.509 | 0.436

RF 0.543 0.505 0.543 | 0.5
Table 2 - Iteration of 9 features

Model | Accuracy | Precision | Recall | F1 score

SVM | 0.507 0.461 0.507 | 0.438

RF 0.526 0.513 0.526 | 0.49
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Table 3 - Iteration of 15 features

Model | Accuracy | Precision | Recall | F1 score
SVM | 0.533 0.448 0.533 | 0.433
RF 0.54 0.475 0.539 | 0.482

6 tables show the results of /OR method:

According above results, we tried to improve accuracy using our hypothesis. Below presented 4, 5, and

Table 4 - Iteration of 17 features with IQR

Model | Accuracy | Precision | Recall | F1 score
SVM | 0.522 0.44 0.522 | 0.441
RF 0.548 0.517 0.548 | 0.504

Table 5 - Iteration of 9 features with IOR

Model | Accuracy | Precision | Recall | F1 score
SVM | 0.507 0.44 0.383 | 0.424
RF 0.52 0.501 0.52 | 0479

Table 6 - Iteration of 15 features with IQR

Model | Accuracy | Precision | Recall | F1 score
SVM | 0.563 0.539 0.563 | 0.425
RF 0.57 0.494 0.57 105

reduction of label values to increase the accuracy:

From previous results, /OR method upgrades accuracy approximately to 2-5%. Next, we work with the

Table 7 - Iteration of 17 features with reducing labels

Model | Accuracy | Precision | Recall | F1 score
SVM | 0.715 0.644 0.715 | 0.614
RF 0.744 0.708 0.744 | 0.704

Table 8 - Iteration of 9 features with reducing labels

Model | Accuracy | Precision | Recall | F1 score
SVM | 0.688 0.598 0.688 | 0.569
RF 0.699 0.657 0.699 | 0.645

Table 9 - Iteration of 15 features with reducing labels

Model | Accuracy | Precision | Recall | F1 score
SVM | 0.78 0.608 0.78 | 0.683
RF 0.78 0.719 0.78 | 0.727
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Adding IOR method to the reduced features and get such results:

Table 10 - Iteration of 17 features with reducing labels and IQR

Model | Accuracy | Precision | Recall | F1 score
SVM | 0.726 0.598 0.726 | 0.621
RF 0.733 0.678 0.733 | 0.688

Table 11 - Iteration of 9 features with reducing labels and IQR

Model | Accuracy | Precision | Recall | F1 score
SVM | 0.706 0.498 0.706 | 0.584
RF 0.717 0.668 0.717 | 0.653

Table 12 - Iteration of 15 features with reducing labels and IQR

Model | Accuracy | Precision | Recall | F1 score
SVM | 0.835 0.697 0.835 | 0.76
RF 0.821 0.738 0.821 | 0.766

There was also work on the alternative method. Here Thermal comfort and Thermal preference will
change places. And now we will predict Thermal preference.

Table 13 - Alternative iteration of 15 features

Model | Accuracy | Precision | Recall | F1 score
SVM | 0.68 0.714 0.68 | 0.605
RF 0.714 0.712 0.714 | 0.685

Table 14 - Alternative iteration of 15 features with reducing labels

Model | Accuracy | Precision | Recall | F1 score
SVM | 0.67 0.698 0.67 | 0.584
RF 0.705 0.702 0.705 | 0.673

Table 15 - Alternative iteration of 15 features with reducing labels and IQR

Model | Accuracy | Precision | Recall | F1 score
SVM | 0.694 0.55 0.694 | 0.577
RF 0.709 0.676 0.709 | 0.651

Conclusion. As a result, we pass a verdict considering the option with guessing Thermal
that added IQR method, we worked with new 8 comfort and Thermal preference, the difference
features and 7 features were already in other articles, between the two algorithms is 1-3%. Basically
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Random Forest looks more stable than SVM. 1
would also like to note that the alternative version
was in the lead in 9 and 15 features, Table 3
and Table 13. But, when we started converting
from 6 to 3 Thermal comfort values and added
IQOR method, our main option immediately won.
In the future, I will add new features to improve
accuracy. For example, one of them is Heart Rate

test neural networks and deep learning as I have seen
good results with these algorithms. I also considered
these [15, 16] papers for the basis of a new work.
Some commonly used algorithms for this purpose
include Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), Long Short-
Term Memory (LSTM) Networks, Autoencoders,
and Deep Belief Networks (DBNG).

Variability (HRV) [11]. On top of that, I want to
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