
IRSTI 76.13.23 https://doi.org/10.58805/kazutb.v.4.21-198

SECURITY ISSUES OF CONTAINERIZATION OF MICROSERVICES

S.U.Aralbayev1, G.Z.Ziyatbekova1,2*, P.Kisala3
1Al-Farabi Kazakh National University, Almaty, Kazakhstan,

2RSE Institute of Information and Computational Technologies MSHE RK CS,
Almaty, Kazakhstan,

3 Lublin Technical University, Poland
е-mail: ziyatbekova@mail.ru

Microservices architecture has become known for its scalability and flexibility in recent years. Containerization
of microservices using technologies such as Docker and Kubernetes has increased the efficiency of application
deployment. However, this technological change has raised questions about the impact of containerization on
security. This paper discusses various security aspects in the context of microservices containerization, including
security, reliability, and data integrity. We explore challenges, best practices, and emerging trends affecting the
security of containerized microservices.
Keywords: Docker, Kubernetes, сontainerization, microservices.

ПРОБЛЕМЫ БЕЗОПАСНОСТИ КОНТЕЙНЕРИЗАЦИИМИКРОСЕРВИСОВ
С.У. Аралбаев1, Г.З. Зиятбекова1,2*, P. Kisala3

1Казахский национальный университет имени аль-Фараби, Алматы, Казахстан,
2Институт информационных и вычислительных технологий КН МНВО РК,

Алматы, Казахстан,
3Люблинский технический yниверситет, Польша,

е-mail: ziyatbekova@mail.ru

Архитектура микросервисов в последние годы стала известна своей масштабируемостью и гибкостью.
Контейнеризация микросервисов с использованием таких технологий, как Docker и Kubernetes, повысила
эффективность развертывания приложений. Однако это технологическое изменение вызвало вопросы о
влиянии контейнеризации на безопасность. В этой статье рассматриваются различные аспекты безопасно-
сти в контексте контейнеризации микросервисов, включая безопасность, надежность и целостность данных.
Мы исследуем проблемы, передовой опыт и новые тенденции, влияющие на безопасность микросервисов
контейнеров.
Ключевые слова: Docker, Kubernetes, контейнеризация, микросервисы.

МИКРОСЕРВИСТЕРДІ КОНТЕЙНЕРЛЕУДІҢ ҚАУІПСІЗДІК МӘСЕЛЕЛЕРІ
С.У. Аралбаев1, Г.З. Зиятбекова1,2*, P. Kisala3

1әл-Фараби атындағы Қазақ ұлттық университеті, Алматы, Қазақстан,
2Қазақстан Республикасы Ғылым және жоғары білім министрлігі Ақпараттық және есептеуіш

технологиялар институты, Алматы, Қазақстан,
3Люблин техникалық yниверситеті, Польша

e-mail: ziyatbekova@mail.ru

Микросервис архитектурасы соңғы жылдары өзінің ауқымдылығы мен икемділігімен танымал болды.
Docker және Kubernetes сияқты технологияларды қолдана отырып, микросервистерді контейнерлеу қо-

1

https://doi.org/10.58805/kazutb.v.4.21-198


ҚазТБУ ХАБАРШЫСЫ - VESTNIK KazUTB - ВЕСТНИК КазУТБ

сымшаларды орналастырудың тиімділігі артты. Алайда, бұл технологиялық өзгеріс контейнерлеудің қауіп-
сіздікке әсері туралы сұрақтар туғызды. Бұл мақалада микросервистерді контейнерлеу контекстінде қауіп-
сіздіктің әртүрлі аспектілері, соның ішінде қауіпсіздік, сенімділік және деректердің тұтастығы қарастыры-
лады. Біз контейнерлік микросервистердің қауіпсіздігіне әсер ететін мәселелерді, ең жақсы тәжірибелерді
және жаңа тенденцияларды зерттейміз.
Түйін сөздер: Docker, Kubernetes, контейнерлеу, микросервистер.

Introduction. Microservices have become the
dominant architectural paradigm for building and
deploying modern applications. They allow complex
systems to be developed as a collection of small,
loosely coupled services. Microservices offer many
advantages, including scalability, maintainability, and
rapid development [1].
The use of containers has grown dramatically in

recent years. This is because containers have many
advantages. Containerization is a technology that allows
you to package and run an application Together with
its dependencies and configurations in a lightweight
and isolated environment called a container. As the
Docker announcement says, with them you can ”do
it once, and you can do it anywhere.” That is, by
isolating the application from the rest of the machine
it's running on, we can integrate the application and all
its dependencies into a package. This makes it possible
to do isolation in parallel - several different containers
that don't interfere with each other. Containerization of
microservices, often facilitated by Docker containers
and managed with Kubernetes, has further simplified
the deployment process. However, as microservices
and containers become more prevalent, security issues
arise.
Materials and methods. The security issues of

containerization of microservices are extensive and
complex. Therefore, we will consider all possible issues
from the microservice code installed in the container
to the parties that have access to the containers. We
will use the following approaches to assess security in
containerized microservices:
• Identification of vulnerabilities of microservices in
containers;

• Risk assessment;
• Exploring ways to realize the risks (threats);
• Find ways to minimize the consequences of threats
(mitigation).
Results and discussion. A microservice is an

independent, self-contained resource created as a
separate executable file or process. A microservice
communicates with other microservices through
standard, lightweight interprocess communications

such as the Hypertext Transfer Protocol (HTTP). What
is the meaning of the term ”autonomous resource”, let's
focus on it. That is, a single microservice performs
only one function. For example, a microservice is
only concerned with registering orders coming into
the system from customers. Even the order data is not
sent to the consumer. But a microservice can launch
another microservice that performs this function. As
we have seen, microservice based applications are
very different from monolithic applications. This is
because in a monolithic application, all the services in
the application are assembled into one large executable
file [2].
Let's look at the above concepts with a simple

example. Web application of a calculator. As can
be seen from Figure 1, although in a monolithic
application the operations in the calculator (addition,
subtraction, multiplication, division) are written as
separate functions, they operate in only one process.

Fig. 1 - Calculator application built on a monolithic
architecture

Fig. 2 - Calculator application based on microservices
architecture

The application shown in the above example is too
simple to fully describe microservices. However, if any
error occurs in any of the services of this application
or if we want to add a new service to the application,
we will have to terminate the application, modify its

2



code and restart it. Now, let's look at the Figure
2 web application structure based on microservices
architecture.
Before containers, dependency ownership was

a nightmare for developers who needed different
versions of the same packages for both applications.We
realized that the easiest way to solve this problemwas to

run applications on separate machines. This container
technology, based on satisfying a single request, created
the ability to runmultiple applications on a single server,
isolating dependencies. It is very important to realize
that the Container runs in the kernel of the operating
system and is isolated by the operating system tools, not
by the hardware capabilities of the computer, such as a
virtual machine. We can see this in Figure 3.

Fig. 3- Structure of containerization and virtualization Fig. 4 - Ranking of scanner tools

The next logical step we should take after
deploying microservices in containers is to distribute
containerized applications to a cluster of servers.
Thanks to coordination tools like Kubernetes, this
process is automated to the point where you don't need

to manually deploy applications to specific machines,
you just tell the coordination tool which containers to
run and it will find the right machine for each one.
From a security perspective, a containerized

environment is similar to a normal hosting environment.

3



ҚазТБУ ХАБАРШЫСЫ - VESTNIK KazUTB - ВЕСТНИК КазУТБ

Attackers try to steal data, change system behavior,
or use other people's computing resources to mine
cryptocurrency. When moved to containers, none of
these things change. However, containers significantly
change the way applications work, leading to a different
set of security risks.
Risks in containers and their mitigation:

• A risk is a potential problem and its consequences.
• A threat is a pathway for a risk to materialize.

• Mitigation is countermeasures that can prevent a
threat or reduce the likelihood of its successful
realization [3].
Currently, there are many scanning tools that detect

container vulnerabilities and assess risks (Figure 4).
We tested the placed and configured container for

security using Trivy and Anchore tools. The result is
shown in Figure 5.

Fig. 5 - Result of container scanning

Risks vary from organization to organization. For
example, for a bank that holds customer money, the
main threat is theft ofmoney. Themain headache for an
online store is fraudulent transactions. For example, a
user running a personal blog may fear that someone will
hack into their account and start imitating themselves
and writing obscene comments. In different countries
the legislation on personal information protection has
its own peculiarities, so the risks of leakage of personal
data of users also differ - in many countries the risks

have the reputation of ”only”, and in Europe theGeneral
Data Protection Regulation (GDPR) allows to fine up to
4% of the total revenue of the company.
Because risks vary widely, the relative importance

of potential risks, as well as the appropriate set of
mitigation tools, varies considerably. Risk management
is based on the process of systematizing risks, listing
potential threats, prioritizing them, and choosing how
to minimize their consequences.
Threat modeling is the process of recognizing and

4



counting potential threats to a system. By planning the
analysis of its components and potential attack vectors,
a threat model helps identify the most vulnerable areas
of a system to attack.
There is no single comprehensive threat model; it

all depends on the risks of the particular environment,
organization, and applications being run. But you can
list some potential hazards of containerization that are
common to many, even all.
What vulnerabilities exist and what danger do they

pose?
Conventionally, vulnerabilities in docker images can

be divided into:
• OS Vulnerabilities-vulnerabilities in the main images
and system packages included in this image;

• Dependencies-vulnerabilities in third-party
dependencies;

• Software Vulnerabilities-vulnerabilities in application
code running in containers;

• Dockerfile-dangerous instructions for building
images.
Using a vulnerable docker image can pose a serious

threat to the security and stability of an organization's
IT infrastructure and applications:
Infrastructure loop security breach: a vulnerable

image can be an access point for attackers to gain
unauthorized access to other containers or even to
the host system, other internal organization resources,
sensitive data.
Malware infection: An attacker can drop malware

on a corrupted image that will infect an organization's
infrastructure or applications. This can lead to data loss
or disruption of critical services;
General instability: using a vulnerable image can lead

to system performance issues.
Analyzing and systematizing the risks within the

containerization technology, we get the same result as
in Table 1.

Table 1 - Systematized representation of hazards in containerization technology

Images Image Registry Orchestration Containers Host OS
Use of unreliable
images

Unsecured
connection

No restriction on
administrative
access

Vulnerabilities
in the working
environment

The OS kernel
is common to all
containers

Software
Vulnerabilities

Using outdated
images with
vulnerabilities

Login without
authorization

Unlimited
network access

Vulnerabilities of
OS components

Configuration
errors

Insufficient level
of authentication
and authorization

Lack of isolation
and inspection of
traffic between
containers

Secure
customized
working
environment

Incorrect user
access rights

Depending on the
importance of the
data, containers
of different levels
are not placed on
hosts

Vulnerability of
containerized
applications

The file system
is accessible via
containers

Orchestrator
configuration
errors

Presence of
unplanned
containers in
the runtime
environment

Build a risk model using the above data:
Where:

• External attackers attempting to gain access to an
externally hosted system (external attackers);

• internal attackers gaining access to a specific part of
the extended system;

• how malicious internal actors, such as developers and
administrators, have some level of extended login

5



ҚазТБУ ХАБАРШЫСЫ - VESTNIK KazUTB - ВЕСТНИК КазУТБ

credentials;
• inadvertent internal actors, which can cause problems
through inadvertence;

• application processes are not the people who have
access to specific software on the system [4].
If we look at these vectors in more detail:
Vulnerable code. The life cycle of an application

begins when a developer writes his code. It, and
its dependencies, may include flaws (vulnerabilities).

There are lists of thousands of known vulnerabilities
that (if present in the application) can be exploited
by attackers. This must be done regularly, as
vulnerabilities are constantly being discovered in
existing code. The analysis process should also detect
containers with outdated software that needs to be
updated with security patches. In addition, there are
analyzers that can detect malware embedded in the
image (Figure 6).

Fig. 6 - Vectors of attack on the container

Poorly customized container images. Written code is
embedded in the container image. The configuration of
the container image build provides many opportunities
to create vulnerabilities that open the way for further
attacks on a running container. These include executing
the container as a superuser, resulting in the superuser
being granted more authority than necessary.
Attacks on the build system. If an attacker can

change the container image structure or affect it in
any way, they can inject malicious code that is then
activated in the production environment. In addition,
the ability to gain a foothold within the assembly
environment is a platform for malware to further
infiltrate the production environment.
Supply Chain Attacks. The collected container image

is stored in a registry that will be extracted before
launch. How do you ensure that the extracted image
matches the one previously entered into the registry?
Could pests have made changes to it? Anyone who can
replace the image or modify it in the space between

build and deployment can execute any code on the
extended system.
Poorly tuned containers. you can run a container

with settings that result in unnecessary and sometimes
unintended permissions. When downloading YAML
configuration files from the Internet, do not run them
without making sure there are no safe settings!
Vulnerable hosts. Containers are executed on host

computers, so the code running on them needs to
be checked for vulnerabilities (e.g., tracking down
older versions of coordination mechanism components
with known vulnerabilities). To reduce the attack
surface, it makes sense to minimize the size of the
software running on each host. In addition, the hosts
should be properly configured according to the security
guidelines [5].
Conclusions. Containerization of microservices

is a powerful way to create scalable and flexible
applications. However, it brings new challenges to
the forefront, especially from a security perspective.

6



This paper examines the impact of microservices
containerization from different perspectives
on security and provides recommendations to

address these challenges. As technology advances,
organizations need to prioritize security to fully
leverage containerized microservices.

References

1. Jung, Kwang wook, Chao, Yang-Ki, Tak, Yong-Jin. Containers and orchestration of numerical ocean model for
computational reproducibility and portability in public and private clouds: Application of ROMS 3.6. Simulation
Modelling Practice and Theory. - 2021. - 109 р.
2. Parminder Singh Kocher. Microservices and Containers. Addison-Wesley Professional.- 2013. - pp. 990-998.
3. Liz Rice. Container Security: Fundamental Technology Concepts that Protect Containerized Applications.
O’Reilly Media.- 2020. - 198 p.
4. Muthanna. Distributed intelligent communication network architecture for unmanned vehicles // Electrosvyaz.
- 2020. No 7. - pр. 29-34.
5. Ermolenko D., Kilicheva K., Khakimov A., Muthanna A.: Exploring a Model Network for Orchestation IoT
Services Based on Kubernetes // Telecom IT. - 2020. - Vol. 8. - Iss. 4. - pp. 69-82 (in Russian).
Information about the authors

Aralbayev Serikbolsin Usenbayevich - graduate student at Al-Farabi Kazakh National University;
serikbolsynaralbayev@gmail.com;
ZiyatbekovaGulzat Ziyatbekkyzy - PhD,ActingAssociate ProfessorNAOAl-Farabi KazakhNational University;
Senior Researcher at the RSE Institute of Information and Computational Technologies of the National Academy
of Sciences of the Republic of Kazakhstan; ziyatbekova@mail.ru;
Piotr Kisala - PhD, Associate Professor Lublin Technical University, Poland; p.kisala@pollub.pl
Сведения об авторах

Аралбаев Серикболсин Усенбаевич - магистрант НАО Казахского национального университета имени аль-
Фараби, serikbolsynaralbayev@gmail.com;
Зиятбекова Гулзат Зиятбеккызы - PhD, и.о. доцента НАО Казахского национального университета имени
аль-Фараби; старший научный сотрудник Института Информационных и вычислительных технологий КН
МНВО РК, ziyatbekova@mail.ru;
Piotr Kisala - PhD, доцент Люблинского технического университета, Польша; p.kisala@pollub.pl

7


