IRSTI 76.13.23 https://doi.org/10.58805/kazutb.v.4.21-198

SECURITY ISSUES OF CONTAINERIZATION OF MICROSERVICES

S.U.Aralbayev!, G.Z.Ziyatbekova!**, P.Kisala®
! Al-Farabi Kazakh National University, Almaty, Kazakhstan,
2RSE Institute of Information and Computational Technologies MSHE RK CS,
Almaty, Kazakhstan,
3 Lublin Technical University, Poland

e-mail: ziyatbekova@mail.ru

Microservices architecture has become known for its scalability and flexibility in recent years. Containerization
of microservices using technologies such as Docker and Kubernetes has increased the efficiency of application
deployment. However, this technological change has raised questions about the impact of containerization on
security. This paper discusses various security aspects in the context of microservices containerization, including
security, reliability, and data integrity. We explore challenges, best practices, and emerging trends affecting the
security of containerized microservices.

Keywords: Docker, Kubernetes, containerization, microservices.

IPOBJIEMbI BE3OITACHOCTU KOHTEMHEPU3AIIMIA MUKPOCEPBHCOB
C.V. Apanéaes’, I.3. Buaréexosa’*", P. Kisala®
'Kazaxckuii HAIMOHATBHBII yHUBepcuTeT uMeHu anb-Papadu, Anmarsl, Kazaxcras,
2MncrutyT nH(OPMAIMOHHBIX ¥ BHUMCTUTENLHBIX TexHonoruin KH MHBO PK,
Anmarsl, Kazaxcran,
3 Tio6MMHCK Ui TeXHUYECKUi yHuBepeuTerT, TTonblia,

e-mail: ziyatbekova@mail.ru

ApXUTEKTypa MUKPOCEPBHCOB B MOCJEAHME TObl CTajla U3BECTHA CBOEH MAacIITaGUpPyeMOCThIO U TUOKOCTHIO.
KoHTeitHepu3amyss MUKPOCEpPBHUCOB C UCTIOIB30BAHMEM TaKMX TeXHOJOrnd, Kak Docker n Kubernetes, moBsicuna
3(peKTUBHOCTD pa3BepThIBAHUS MPUIOkKEHUH. OJHAKO 3TO TEXHOJIOTMYECKOE M3MEHEHHE BBI3BAJIO BOMPOCH O
BJIMSIHAM KOHTEHHepH3aluy Ha Oe30MacHOCTh. B 3TOM cTaThe paccMaTpUBaIOTCS Pa3IMYHbIE aCHeKThl Oe30MacHO-
CTH B KOHTEKCTe KOHTEHHEePHU3AI[MUK POCEPBHUCOB, BKJTIOUAs OE30MaCHOCTb, HAJIeKHOCTD U IIEJIOCTHOCTD JTAHHBIX.
Msi uccrnieyeM mpoOseMbl, TIEPEIOBOI OIBIT U HOBbIE TEHIEHIMH, BIMSIONINE HA GE30MaCHOCTh MUKPOCEPBUCOB
KOHTEWHEPOB.

Kurouessle cioBa: Docker, Kubernetes, KoHTeiiHepr3aIisi, MUKPOCEPBHCHL.

MHUKPOCEPBUCTEP/II KOHTEMHEPJIEY AIH, KAYIIICI3IIK MOCEJIEJIEPI
C.V. Apanbaes’, I.3. Buaréexosa’?", P. Kisala®
lon-®apabu areinarsl Kasak yarTik yHuBepeuteti, AnMarel, Kasakcran,
?Kasakcran Pecry6mukach! FBUTBIM 5koHe 5Korapbl GiTiM MUHUCTPIITi AKIMApaTTHIK, KoHE ecenTeyin
TEXHOJIOTUSIAp MHCTUTYTHI, AnMartsl, Ka3akcras,
3 Tio6MMH TeXHUKANBIK, YHUBepcuTeTi, [Tosbina

e-mail: ziyatbekova@mail.ru

MuKpOCepBUC apXUTEKTYPAChl COHFBI JKbULIAPbI ©31HIH AyKBIMJIBUIBIFBI MEH MKEMJIUTIriMEH TaHbIMAJ OOJIIbL.
Docker xone Kubernetes CHSKTH TeXHOJMOTHsIIAPABI KOJJAHA OTBHIPHIN, MUKPOCEPBUCTEPAi KOHTEHHepey KO-

https://doi.org/10.58805/kazutb.v.4.21-198

KasTBY XABAPIIBICHI - VESTNIK KazUTB - BECTHHUK KazVTb

CBHIMITTATIAPABI OPHAJIACTHIPYABIH TUIMIIUTITI apTTHL. Anaiiaa, Oy TEXHOJOTHSUIIBIK, ©3repic KOHTeHHepIeyIiH Kayill-
CI3MIKKe acepi Typassl CypakTap TyFbI3abl. Byr Makaiaga MUKpocepBUCTepi KOHTeHHepiIey KOHTEKCTiH/E Kayill-
CI3HIKTIH OPTYPJIi aCMIeKTiIepi, COHBIH ilTiHAE KAYINCI3OiK, CeHIMAUTIK jKoHe IepeKTepaiH TYTACTBIFbl KapacThIPHI-
najpl. Bi3 KOHTEHHEPITiK MUKPOCEPBUCTEPIiH KAyilICi3/IiriHe acep eTeTiH Macesesepii, eH KaKChl Txkipudenepi

JKOHE KaHa TCHACHIUAIApAbL BCpTTeﬁMiB.

Tyiiin ce3aep: Docker, Kubernetes, KoHTEHHEpIIey, MUKPOCEPBUCTED.

Introduction. Microservices have become the
dominant architectural paradigm for building and
deploying modern applications. They allow complex
systems to be developed as a collection of small,
loosely coupled services. Microservices offer many
advantages, including scalability, maintainability, and
rapid development [1].

The use of containers has grown dramatically in
recent years. This is because containers have many
advantages. Containerization is a technology that allows
you to package and run an application Together with
its dependencies and configurations in a lightweight
and isolated environment called a container. As the
Docker announcement says, with them you can “do
it once, and you can do it anywhere.” That is, by
isolating the application from the rest of the machine
it's running on, we can integrate the application and all
its dependencies into a package. This makes it possible
to do isolation in parallel - several different containers
that don't interfere with each other. Containerization of
microservices, often facilitated by Docker containers
and managed with Kubernetes, has further simplified
the deployment process. However, as microservices
and containers become more prevalent, security issues
arise.

Materials and methods. The security issues of
containerization of microservices are extensive and
complex. Therefore, we will consider all possible issues
from the microservice code installed in the container
to the parties that have access to the containers. We
will use the following approaches to assess security in
containerized microservices:

¢ Identification of vulnerabilities of microservices in
containers;

¢ Risk assessment;

» Exploring ways to realize the risks (threats);

* Find ways to minimize the consequences of threats
(mitigation).
Results and discussion. A microservice is an

independent, self-contained resource created as a

separate executable file or process. A microservice

communicates with other microservices through
standard, lightweight interprocess communications

such as the Hypertext Transfer Protocol (HTTP). What
is the meaning of the term “autonomous resource”, let's
focus on it. That is, a single microservice performs
only one function. For example, a microservice is
only concerned with registering orders coming into
the system from customers. Even the order data is not
sent to the consumer. But a microservice can launch
another microservice that performs this function. As
we have seen, microservice based applications are
very different from monolithic applications. This is
because in a monolithic application, all the services in
the application are assembled into one large executable
file [2].

Let's look at the above concepts with a simple
example. Web application of a calculator. As can
be seen from Figure 1, although in a monolithic
application the operations in the calculator (addition,
subtraction, multiplication, division) are written as
separate functions, they operate in only one process.

+ _—

Calc(num1,num2,0
Client < ¢ P) >

output x

%

Fig. 1 - Calculator application built on a monolithic
architecture

®
®

Fig. 2 - Calculator application based on microservices
architecture

©

%

op(num1,num2)

Client <

Y

Output

The application shown in the above example is too
simple to fully describe microservices. However, if any
error occurs in any of the services of this application
or if we want to add a new service to the application,
we will have to terminate the application, modify its

code and restart it. Now, let's look at the Figure
2 web application structure based on microservices
architecture.

Before containers, dependency ownership was
a nightmare for developers who needed different
versions of the same packages for both applications. We
realized that the easiest way to solve this problem was to

App 1

App 3

Bins/Lib

Bins/Lib Bins/Lib

Guest OS

Hypervisor

Guest OS
Infrastructure

=) L Y

=
[—]

Virtual Machines

App 1

App 3

Container Engine

Operating System

Infrastructure

Containers

Fig. 3- Structure of containerization and virtualization

The next logical step we should take after
deploying microservices in containers is to distribute

containerized applications to a cluster of servers.

Thanks to coordination tools like Kubernetes, this
process is automated to the point where you don't need

run applications on separate machines. This container
technology, based on satisfying a single request, created
the ability to run multiple applications on a single server,
isolating dependencies. It is very important to realize
that the Container runs in the kernel of the operating
system and is isolated by the operating system tools, not
by the hardware capabilities of the computer, such as a
virtual machine. We can see this in Figure 3.

Scanners Provider Evaluate As Onboard
s d Default in
Release
~ P H
Clair © clair centos v (remove v1.10
das
default
inv2.2)
Anchore a#<he anchore v v1.10
Trivy @UWV Aqua v v v1.10
csp ('aqua Aqua v v1.10
DoSec ﬁ DoSec v v1.10
=
Sysdig Lysysdig Sysdig v v2.1.0
Secure
fensorSe () P8 TensorSe v v2.2.0
curity curity
ArksecSc Arksec v v2.4.0

anner

/.

Fig. 4 - Ranking of scanner tools

to manually deploy applications to specific machines,
you just tell the coordination tool which containers to
run and it will find the right machine for each one.

From a security perspective, a containerized
environment is similar to a normal hosting environment.

KasTBY XABAPHIBICHI - VESTNIK KazUTB - BECTHHK KazVTb

Attackers try to steal data, change system behavior,
or use other people's computing resources to mine
cryptocurrency. When moved to containers, none of
these things change. However, containers significantly
change the way applications work, leading to a different
set of security risks.

Risks in containers and their mitigation:
» A risk is a potential problem and its consequences.

* A threat is a pathway for a risk to materialize.

@ Vulnerability Severity: Low

Low

[

10 20 a0 40

Scanned by: Clair@2.x
Duration: 2 sec
Scan completed time: 5M15/23, 10:41 PM

@ Vulnerability Severity: Low

e Mitigation is countermeasures that can prevent a
threat or reduce the likelihood of its successful
realization [3].

Currently, there are many scanning tools that detect
container vulnerabilities and assess risks (Figure 4).

We tested the placed and configured container for
security using Trivy and Anchore tools. The result is
shown in Figure 5.

@ Vulnerability Severity: Low

10 0 30 40
Scanned by:. Anchore@!.0.0
Duration: 4 sec

Scan completed time: 5A5/23, 10:42 PM

Vulnerability Severity: Medium

Critical |0

High |0

Low 21

10

Scanned by: Trivy@wv0.40.0
Duration: 8 sec
Scan completed time: 5/15/23, 10044 PM

20 30 40

Critical |0

10 20 30 40

Scanned by: dosec_scanneri@l .0
Duration: 2 sec
Scan completed time: 5/15/23, 10046 PM

Fig. 5 - Result of container scanning

Risks vary from organization to organization. For
example, for a bank that holds customer money, the
main threat is theft of money. The main headache for an
online store is fraudulent transactions. For example, a
user running a personal blog may fear that someone will
hack into their account and start imitating themselves
and writing obscene comments. In different countries
the legislation on personal information protection has
its own peculiarities, so the risks of leakage of personal
data of users also differ - in many countries the risks

have the reputation of “only”, and in Europe the General
Data Protection Regulation (GDPR) allows to fine up to
4% of the total revenue of the company.

Because risks vary widely, the relative importance
of potential risks, as well as the appropriate set of
mitigation tools, varies considerably. Risk management
is based on the process of systematizing risks, listing
potential threats, prioritizing them, and choosing how
to minimize their consequences.

Threat modeling is the process of recognizing and

counting potential threats to a system. By planning the
analysis of its components and potential attack vectors,
a threat model helps identify the most vulnerable areas
of a system to attack.

There is no single comprehensive threat model; it
all depends on the risks of the particular environment,
organization, and applications being run. But you can
list some potential hazards of containerization that are
common to many, even all.

What vulnerabilities exist and what danger do they
pose?
Conventionally, vulnerabilities in docker images can
be divided into:
* OS Vulnerabilities-vulnerabilities in the main images
and system packages included in this image;
* Dependencies-vulnerabilities in
dependencies;

third-party

» Software Vulnerabilities-vulnerabilities in application
code running in containers;

* Dockerfile-dangerous instructions for

images.

building

Using a vulnerable docker image can pose a serious
threat to the security and stability of an organization's
IT infrastructure and applications:

Infrastructure loop security breach: a vulnerable
image can be an access point for attackers to gain
unauthorized access to other containers or even to
the host system, other internal organization resources,
sensitive data.

Malware infection: An attacker can drop malware
on a corrupted image that will infect an organization's
infrastructure or applications. This can lead to data loss
or disruption of critical services;

General instability: using a vulnerable image can lead
to system performance issues.

Analyzing and systematizing the risks within the

containerization technology, we get the same result as
in Table 1.

Table 1 - Systematized representation of hazards in containerization technology

Images Image Registry Orchestration Containers Host OS
Use of unreliable | Unsecured No restriction on | Vulnerabilities The OS kernel
images connection administrative in the working | is common to all
access environment containers
Software Using outdated | Login without | Unlimited Vulnerabilities of
Vulnerabilities images with | authorization network access OS components
vulnerabilities
Configuration Insufficient level | Lack of isolation | Secure Incorrect user
errors of authentication | and inspection of | customized access rights
and authorization | traffic between | working
containers environment
Depending on the | Vulnerability of | The file system
importance of the | containerized is accessible via
data, containers | applications containers
of different levels
are not placed on
hosts
Orchestrator Presence of
configuration unplanned
errors containers in
the runtime
environment

Build a risk model using the above data:

Where:

« External attackers attempting to gain access to an °* how malicious internal actors, such as developers and

externally hosted system (external attackers); administrators, have some level of extended login

* internal attackers gaining access to a specific part of

the extended system;

KasTBY XABAPHIBICHI - VESTNIK KazUTB - BECTHHK KazVTb

credentials;

¢ inadvertent internal actors, which can cause problems
through inadvertence;

 application processes are not the people who have
access to specific software on the system [4].

If we look at these vectors in more detail:

Vulnerable code. The life cycle of an application
begins when a developer writes his code. It, and

its dependencies, may include flaws (vulnerabilities).

Host
application
Vulnerable
code Container

exploits runtime/

orchestrator

Badly configured host

Application

There are lists of thousands of known vulnerabilities
that (if present in the application) can be exploited
by attackers. This must be done regularly, as
vulnerabilities are constantly being discovered in
existing code. The analysis process should also detect
containers with outdated software that needs to be
updated with security patches. In addition, there are
analyzers that can detect malware embedded in the
image (Figure 6).

— Insecure networking

Compromised container image
Badly configured container image

Secret exposure

Container escape

Fig. 6 - Vectors of attack on the container

Poorly customized container images. Written code is
embedded in the container image. The configuration of
the container image build provides many opportunities
to create vulnerabilities that open the way for further
attacks on a running container. These include executing
the container as a superuser, resulting in the superuser
being granted more authority than necessary.

Attacks on the build system. If an attacker can
change the container image structure or affect it in
any way, they can inject malicious code that is then
activated in the production environment. In addition,
the ability to gain a foothold within the assembly
environment is a platform for malware to further
infiltrate the production environment.

Supply Chain Attacks. The collected container image
is stored in a registry that will be extracted before
launch. How do you ensure that the extracted image
matches the one previously entered into the registry?
Could pests have made changes to it? Anyone who can
replace the image or modify it in the space between

build and deployment can execute any code on the
extended system.

Poorly tuned containers. you can run a container
with settings that result in unnecessary and sometimes
unintended permissions. When downloading YAML
configuration files from the Internet, do not run them
without making sure there are no safe settings!

Vulnerable hosts. Containers are executed on host
computers, so the code running on them needs to
be checked for vulnerabilities (e.g., tracking down
older versions of coordination mechanism components
with known vulnerabilities). To reduce the attack
surface, it makes sense to minimize the size of the
software running on each host. In addition, the hosts
should be properly configured according to the security
guidelines [5].

Conclusions. Containerization of microservices
is a powerful way to create scalable and flexible
applications. However, it brings new challenges to
the forefront, especially from a security perspective.

This paper examines the impact of microservices address these challenges. As technology advances,
containerization from different perspectives organizations need to prioritize security to fully
on security and provides recommendations to leverage containerized microservices.

References

1. Jung, Kwang wook, Chao, Yang-Ki, Tak, Yong-Jin. Containers and orchestration of numerical ocean model for
computational reproducibility and portability in public and private clouds: Application of ROMS 3.6. Simulation
Modelling Practice and Theory. - 2021. - 109 p.

2. Parminder Singh Kocher. Microservices and Containers. Addison-Wesley Professional.- 2013. - pp. 990-998.

3. Liz Rice. Container Security: Fundamental Technology Concepts that Protect Containerized Applications.
O’Reilly Media.- 2020. - 198 p.

4. Muthanna. Distributed intelligent communication network architecture for unmanned vehicles // Electrosvyaz.
-2020. No 7. - pp. 29-34.

5. Ermolenko D., Kilicheva K., Khakimov A., Muthanna A.: Exploring a Model Network for Orchestation IoT
Services Based on Kubernetes // Telecom IT. - 2020. - Vol. 8. - Iss. 4. - pp. 69-82 (in Russian).

Information about the authors
Aralbayev Serikbolsin Usenbayevich - graduate student at Al-Farabi Kazakh National University;
serikbolsynaralbayev@gmail.com;

Ziyatbekova Gulzat Ziyatbekkyzy - PhD, Acting Associate Professor NAO Al-Farabi Kazakh National University;
Senior Researcher at the RSE Institute of Information and Computational Technologies of the National Academy
of Sciences of the Republic of Kazakhstan; ziyatbekova@mail.ru;

Piotr Kisala - PhD, Associate Professor Lublin Technical University, Poland; p.kisala@pollub.pl
Csedenust 00 asmopax

Apanbaes Cepukboncun YcenOaeBud - maructpanT HAO Ka3axckoro HaliOHaIbHOTO YHUBEPCUTETA UMEHH Allb-
®apabu, serikbolsynaralbayev@gmail.com;

BusardekoBa ['yn3ar 3ustoekkb3bl - PhD, u.0. gonenta HAO Ka3axckoro HallMOHAJIBHOTO YHUBEPCUTETA UMEHH
anp-Papabu; crapiimii Hay4dHbIi coTpyaHUK VHCTUTyTa MH(OPMAIIMOHHBIX U BHIUMCIIUTEIbHBIX TexHomorni KH
MHBO PK, ziyatbekova@mail.ru;

Piotr Kisala - PhD, gouent JI0OJMHCKOTO TeXHUYECKOro yHuBepeuTeta, [losbina; p.kisala@pollub.pl

